Plantilla:Razones trigonométricas de un ángulo cualquiera

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:51 17 dic 2017
Coordinador (Discusión | contribuciones)
(Signo de las razones trigonométricas)
← Ir a diferencia anterior
Revisión de 17:52 17 dic 2017
Coordinador (Discusión | contribuciones)
(Signo de las razones trigonométricas)
Ir a siguiente diferencia →
Línea 39: Línea 39:
{{p}} {{p}}
===Signo de las razones trigonométricas=== ===Signo de las razones trigonométricas===
 +El signo de una razón trigonométrica viene determinado por el cuadrante en el que se encuentre el ángulo.
 +{{p}}
{{Teorema|titulo=Signo de las razones trigonométricas|enunciado= {{Teorema|titulo=Signo de las razones trigonométricas|enunciado=
*'''Seno:''' El seno de un ángulo es positivo si el ángulo está en el primer o segundo cuadrante, y es negativo si está en el tercer o cuarto cuadrante. *'''Seno:''' El seno de un ángulo es positivo si el ángulo está en el primer o segundo cuadrante, y es negativo si está en el tercer o cuarto cuadrante.

Revisión de 17:52 17 dic 2017

Obsérvese como, en el apartado anterior, las coordenadas del punto B son (cos \, \alpha , sen \, \alpha ). Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

  • Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:

B=(cos \, \alpha , sen \, \alpha )

  • Definiremos la tangente del ángulo, como:

tg \, \alpha = \cfrac{sen(\alpha)}{cos(\alpha)}    ,    \alpha \ne 90^\circ \, , 270^\circ

Signo de las razones trigonométricas

El signo de una razón trigonométrica viene determinado por el cuadrante en el que se encuentre el ángulo.

ejercicio

Signo de las razones trigonométricas


  • Seno: El seno de un ángulo es positivo si el ángulo está en el primer o segundo cuadrante, y es negativo si está en el tercer o cuarto cuadrante.
  • Coseno: El coseno de un ángulo es positivo si el ángulo está en el primer o cuarto cuadrante, y es negativo si está en el segundo o tercer cuadrante.



Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Razones trigonométricas de un ángulo cualquiera sin usar el círculo unidad

También se pueden definir las razones trigonométricas de un ángulo de cualquier cuadrante sin hacer uso del círculo unidad. Puedes verlo en los siguientes videos:

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda