Regla de Ruffini (4ºESO Académicas)
De Wikipedia
Revisión de 18:21 15 sep 2018 Coordinador (Discusión | contribuciones) (→Teorema del resto) ← Ir a diferencia anterior |
Revisión de 07:29 16 sep 2018 Coordinador (Discusión | contribuciones) (→División de un polinomio por (x-a). Regla de Ruffini) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
{{p}} | {{p}} | ||
__TOC__ | __TOC__ | ||
- | ==División de un polinomio por (x-a). Regla de Ruffini== | + | ==Regla de Ruffini== |
+ | ===División de un polinomio por (x-a)=== | ||
{{Regla de Ruffini}} | {{Regla de Ruffini}} | ||
{{p}} | {{p}} | ||
+ | ===División de un polinomio por (mx+n)=== | ||
+ | |||
===Ejercicios propuestos=== | ===Ejercicios propuestos=== | ||
{{ejercicio | {{ejercicio |
Revisión de 07:29 16 sep 2018
Enlaces internos | Para repasar | Enlaces externos |
Indice Descartes Manual Casio | Test de Álgebra | WIRIS Calculadora |
Tabla de contenidos |
Regla de Ruffini
División de un polinomio por (x-a)
Regla de Ruffini
La Regla de Ruffini es un procedimiento que nos permite dividir un polinomio entre un binomio de la forma .
Debemos esta regla al matemático italiano Paolo Ruffini,
Procedimiento:
Vamos a dividir el polinomio
entre el binomio
para obtener el cociente
y el resto .
1. Trazamos dos líneas a manera de ejes. Cogemos los coeficientes de y los escribimos ordenados. Entonces escribimos en la parte inferior izquierda del eje, encima de la línea:
2. Pasamos el coeficiente más pegado a la izquierda, , justo debajo de la línea, para obtener el primero de los coeficientes :
3. Multiplicamos el número más pegado a la derecha debajo de la línea por y lo escribimos sobre la línea en la primera posición de la derecha:
4. Añadimos los dos valores que hemos puesto en la misma columna:
5. Repetimos los pasos 3 y 4 hasta que no tengamos más números:
Ejemplo: Regla de Ruffini
Divide los polinomios usando la regla de Ruffini:
| 7 -5 -4 6 -1 | 2| 14 18 28 68 --|------------------- | 7 9 14 34 |67 |____ El resultado significa que:
|
|
Regla de Ruffini. Ejemplos.
Regla de Ruffini: Método rápido para realizar divisiones de polinomios entre binomios del tipo (x - a). Ejemplos.
La regla de Ruffini nos permite determinar supersónicamente el cociente y el resto de la división entre un polinomio P(x) y el polinomio Q(x) = x - a.
Cómo se aplica la Regla de Ruffini.
División de polinomios por el método de Ruffini para divisores del tipo (x-a).
Ejemplo de división de polinomios usando la regla de Ruffini.
2 ejemplos de división de polinomios usando la regla de Ruffini.
2 ejemplos de división mediante la regla de Ruffini
Otros 2 ejemplos de aplicación de la regla de Ruffini
Divide entre .
a) Divide entre
b) Divide entre
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1a)
- 1b)
- 1c)
- 1d)
- 1e)
- 1f)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 1g)
- 1h)
- 1i)
- 1j)
- 1k)
- 1l)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2a)
- 2b)
- 2c)
- 2d)
- 2e)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- 2f)
- 2g)
- 2h)
- 2i)
- 2j)
Divide los siguientes polinomios utilizando la regla de Ruffini:
- a)
- b)
- c)
Ejercicios de autoevaluación sobre la regla de Ruffini.
División de un polinomio por (mx+n)
Ejercicios propuestos
Ejercicios propuestos: Regla de Ruffini |
Teorema del resto
Teorema del Resto
El valor que toma un polinomio, , cuando hacemos , coincide con el resto de la división de entre . Es decir, , donde es el resto de dicha división.
Esto se deduce directamente de una de las propiedades de la división, la que dice que:
donde es el dividendo, el divisor, el cociente y el resto y verificándose además, que el grado de es menor que el grado de .
En efecto, si tomamos el divisor , entonces tiene grado menor que 1 (el grado del resto es 0); es decir, es una constante que podemos llamar , y la fórmula anterior se convierte en:
Tomando el valor se obtiene que:
Ejemplo: Teorema del Resto
Calcula el resto de dividir el polinomio entre
Primer método:
Bastará calcular
Así el resto será
Segundo método:
Usando la regla de Ruffini:
| 1 -3 0 -7 | 2| 2 -2 -4 --|---------------- | 1 -1 -2 |-11 |____Así, el resto de la división es -11, y por el teorema del resto, P(2) = -11.
Teorema del resto. Ejemplos.
Si P(x) es un polinomio de grado no inferior a 1, el resto de la división P(x)/(x-a) es el número P(a) que se obtiene al sustituir "x" por "a" en P(x). La división P(x)/(x-a) es "exacta" si P(a) = 0; y en tal caso se dice que "a" es un "cero" o "raíz" del polinomio P(x), o una solución de la ecuación P(x) = 0.
- Teorema del resto para la división de un polinomio entre un binomio del tipo (ax+b).
- Como ejemplo, también resolveremos los siguientes ejercicios:
- 1) Halla el resto de dividir el polinomio entre el binomio .
- 2) Halla el resto de dividir el polinomio entre el binomio .
Halla el resto de la división del polinomio entre .
Halla el valor de para que la división del polinomio entre sea exacta.
1) Halla el resto de la división del polinomio entre , , y .
2) Determina el valor de k para que el polinomio sea divisible por .
3) Sea . Halla el valor de k para que el resto de la división de entre sea igual a 2.
a) Halla el resto de la división de entre .
b) y c) Otros dos ejercicios de nivel superior.
Ejercicios de autoevaluación sobre el teorema del resto.
Ejercicios propuestos
Ejercicios propuestos: Teorema del resto |