Plantilla:Límite de cociente de funciones polinómicas

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:24 1 abr 2020
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 53: Línea 53:
|url1=https://youtu.be/WCmsYJfUTM8 |url1=https://youtu.be/WCmsYJfUTM8
}} }}
-}}+----
-{{Videotutoriales+'''Límite de cociente de funciones polinómicas (Tipo a/0)'''
-|titulo=Ejercicios: ''Límite de cociente de funciones polinómicas (Tipo a/0)''+
-|enunciado=+
- +
{{Video_enlace_julioprofe {{Video_enlace_julioprofe
|titulo1=Ejercicio 1 |titulo1=Ejercicio 1
Línea 85: Línea 82:
|url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/02-limites-de-funciones-2/0801-dos-ejercicios-7 |url1=http://matematicasbachiller.com/videos/2-bachillerato/introduccion-al-calculo-diferencial-de-una-variable/02-limites-de-funciones-2/0801-dos-ejercicios-7
}} }}
 +----
 +'''Límite de cociente de funciones polinómicas (Tipo 0/0)'''
-}} 
-{{p}} 
-{{Videotutoriales 
-|titulo=Ejercicios: ''Límite de cociente de funciones polinómicas (Tipo 0/0)'' 
-|enunciado= 
{{Tabla50|celda1= {{Tabla50|celda1=
{{Video_enlace_julioprofe {{Video_enlace_julioprofe

Revisión actual

ejercicio

Procedimiento


Sea f(x)=\cfrac{P(x)}{Q(x)}, con P(x)\; y Q(x)\; dos polinomios en x.

  1. \mbox{Si} \ Q(c) \ne 0 \ \Rightarrow \ \lim_{x \to c} \cfrac{P(x)}{Q(x)}=\cfrac{P(c)}{Q(c)}
  2. \mbox{Si} \ P(c) \ne 0 \ \  \mbox{y} \ \ Q(c)=0 \ \Rightarrow \ \lim_{x \to c} \cfrac{P(x)}{Q(x)}=\pm \infty. En este caso será necesario estudiar los límites laterales para determinar el signo del infinito por cada lado. Podemos hacer uso de la calculadora.
  3. \mbox{Si} \ P(c)=Q(c)=0 \ \Rightarrow \ \lim_{x \to c} \cfrac{P(x)}{Q(x)}= \mbox{indeterminado (0/0)}. Para resolver la indeterminación simplificaremos la fracción, ya que al anularese los dos polinomios deberán tener factores comunes. Una vez simplificada volveremos a calcular el límite, pudiendo darse cualquiera de las tres situaciones que acabamos de ver, repitiendo el proceso hasta que estemos en los caso 1 ó 2 y quede calculado el límite.

ejercicio

Ejemplo: Límite de una función cociente de polinomios


Calcula el valor de los siguientes límites y haz un esbozo gráfico del resultado:

a) \lim_{x \to 2} \frac{x+1}{x-2}         b) \lim_{x \to 2} \frac{x^2-5x+6}{x^2+3x-10}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda