Composición de funciones (1ºBach)

De Wikipedia

Función compuesta

g o f, es la aplicación resultante de la aplicación sucesiva de f y de g. En el ejemplo, (g o f)(a)=@.
Aumentar
g o f, es la aplicación resultante de la aplicación sucesiva de f y de g. En el ejemplo, (g o f)(a)=@.

La función compuesta es una función formada por la aplicación sucesiva de otras dos funciones. Para ello, se aplica sobre el argumento la función más próxima al mismo, y al resultado del cálculo anterior se le aplica finalmente la función restante. Formalmente:

Dadas dos funciones f: X \rightarrow Y y g: Y \rightarrow Z, donde la imagen de f\; está contenida en el dominio de definición de g\;, se define la función compuesta (g \circ f ): X \rightarrow Z como (g \circ f)(x) = g (f(x)), para todos los elementos x\; de X\;.

X \to \,\,Y\;\; \to \;\;\,Z

x \to f(x) \to g(f(x))

A g \circ f se le llama composición de f y g. Nótese que se nombra no siguiendo el orden de escritura, sino el orden en que se aplican las funciones a su argumento.

Ejemplo

Sean las funciones:

f(x) = x^2 \,
g(x) = sin(x) \,

La función compuesta de g y de f que expresamos:

(f \circ g)(x) = f(g(x)) = (sin(x))^2 = sin^2 (x) \,

La interpretación de (f o g) aplicada a la variable x significa que primero tenemos que aplicar g a x, con lo que obtendríamos un valor de paso

z = g(x)=sin(x) \,

y después aplicamos f a z para obtener

y = f(z) = z^2 = sin^2(x) \,
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda