Razones trigonométricas de ángulos cualesquiera (1ºBach)

De Wikipedia

Tabla de contenidos

Circunferencia goniométrica

Vamos a establecer un sistema de referencia para el estudio de los ángulos de cualquier cuadrante.

Consideremos una circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con su centro en el origen de coordenadas O. Sobre ella situaremos nuestro triángulo rectángulo ABC, haciendo coincidir su vértice A con O, el cateto contiguo al ángulo \alpha \; lo situaremos en el eje X positivo y la hipotenusa coincidiendo con el radio, tal y como se muestra en la figura. A esta circunferencia la llamaremos circunferencia goniométrica.

Teniendo en cuenta que \overline{AB} = \overline{OE}= radio = 1, las razones trigonométricas del águlo \alpha \; se expresan de la siguiente manera:


  • sen \, \alpha = \cfrac{\overline{CB}}{\overline{AB}}=\overline{CB}
  • cos \, \alpha =  \cfrac{\overline{OC}}{\overline{AB}}=\overline{OC}
  • tg \, \alpha = \cfrac{\overline{DE}}{\overline{OE}}=\overline{DE}

Razones trigonométricas de un ángulo cualquiera

Obsérvese como las coordenadas del punto B, del apartado anterior, son (cos \, \alpha , sen \, \alpha ). Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

  • Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del segundo lado del ángulo con la circunferencia goniométrica:
B=(cos \, \alpha , sen \, \alpha )
  • Definiremos la tangente del ángulo, como:
tg \, \alpha = \cfrac{sen(\alpha)}{cos(\alpha)}    ,    \alpha \ne 90^\circ \, , 180^\circ

Signo de las razones trigonométricas

Los ejes cartesianos dividen a la circunferencia goniométrica en cuatro regiones denominadas cuadrantes:

  • Un ángulo \alpha\;, pertenece al primer cuadrante si 0^\circ< \alpha <90^\circ
  • Un ángulo \alpha\;, pertenece al segundo cuadrante si 90^\circ< \alpha <180^\circ
  • Un ángulo \alpha\;, pertenece al tercer cuadrante si 180^\circ< \alpha <270^\circ
  • Un ángulo \alpha\;, pertenece al cuarto cuadrante si 270^\circ< \alpha <360^\circ

Según en qué cuadrante estemos, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, asignaremos signo positivo al coseno si está a la derecha de O y negativo si está a la izquierda.

Analogamente, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Asignaremos signo positivo al seno si está por encima y negativo si está por debajo.

Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Relaciones fundamentales de la trigonometría (ángulos de cualquier cuadrante)

Las relaciones fundamentales de la trigonometría, ya estudiadas anteriormente, siguen siendo válidas con las definiciones dadas para ángulos de cualquier cuadrante.

* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda