Plantilla:Transformaciones elementales de funciones (1ºBach)

De Wikipedia

Tabla de contenidos

Traslación vertical y horizontal

  • Traslación vertical: Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x)+k\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia arriba y la de f(x)-k\; desplazándola k\; unidades hacia abajo.

  • Traslación horizontal: Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x+k)\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia la izquierda y la de f(x-k)\; desplazándola k\; unidades hacia la derecha.

Simetrías

  • Simetría respecto del eje X: Las gráficas de las funciones f(x)\; y -f(x)\; son simétricas respecto del eje de abscisas.

  • Simetría respecto del eje Y: Las gráficas de las funciones f(x)\; y f(-x)\; son simétricas respecto del eje de ordenadas.
  • Simetría respecto del origen: Las gráficas de las funciones f(x)\; y -f(-x)\; son simétricas respecto del origen de coordenadas.

Dilatación y contracción

  • Si k>1\;, la gráfica de la función k \cdot f(x)\; es una dilatación o estiramiento vertical de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función k \cdot f(x)\; es una contracción o achatamiento vertical de la gráfica de f(x)\;.
  • Si -1<k<0\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una contracción y una simetría respecto del eje X.
  • Si k<-1\;, la gráfica de la función k \cdot f(x)\; es la combinacion de una dilatación y una simetría respecto del eje X.

Actividades

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda