Plantilla:Idea intuitiva de continuidad (1ºBach)
De Wikipedia
Tabla de contenidos |
Idea intuitiva de continuidad
En este apartado pretendemos hacer una acercamiento al concepto de continuidad de una forma intuitiva, sin profundizar y sin usar el concepto de límite, el cual estudiaremos más adelante.
Una función entenderemos que es continua si podemos dibujar su gráfica de un solo trazo. Si en algún punto "se rompe" diremos que presenta una discontinuidad en dicho punto.
Introducción al concepto de continuidad de forma intuitiva. Ejemplo gráfico de discontinuidades.
Propiedad
Las funciones definidas por expresiones analíticas elementales son continuas en todos los puntos de su dominio de definición.
Discontinuidades
Basicamente, nos podemos encontrar los siguientes tipos de discontinuidades en un punto :
En esta escena podrás ver ejemplos de los distintos tipos de discontinuidades.
Discontinuidades evitables
- Discontinuidad evitable: La función no está definida en el punto o bien el punto está desplazado.
Evitable (no definida en un punto)
| Evitable (punto desplazado)
|
Discontinuidades no evitables de primera especie
- Discontinuidad de salto finito: La función da un salto al llegar a . Se define el salto como la diferencia (ver gráfica adjunta)
- Discontinuidad de salto infinito: La curva tiene una "rama infinita" en un solo lado del punto .
- Discontinuidad asintótica. La curva tiene "ramas infinitas" en el punto . Decimos que la curva presenta una asíntota vertical en el punto .
Salto finito (Salto=d-c)
| Salto infinito
| Asintótica
|
Discontinuidad no evitable de segunda especie
Discontinuidad de segunda especie: La función, al acercarse al punto x=a lo hace, por ejemplo, de forma "oscilante".
Cuando veamos el concepto de límite formalizaremos estas definiciones que aquí hemos visto de forma intuitiva.
Ejercicio resuelto: Tipos de discontinuidades
Indica qué tipo de discontinuidad presentan las siguientes funciones y en qué punto:
- a) b) c)
- d) e)
- a) En x=0 tiene una discontinuidad esencial de primera especie asintótica.
- b) En x=2 tiene una discontinuidad esencial de primera especie asintótica.
- c) En x=2 tiene una discontinuidad evitable.
- d) En x=2 tiene una discontinuidad esencial de primera especie de salto.
- d) En x=2 tiene una discontinuidad evitable.