Plantilla:Derivada (1ºBach)
De Wikipedia
Tabla de contenidos |
Crecimiento de una función en un punto. Derivada
- El crecimiento de una función en un intervalo se mide mediante la pendiente de la recta que pasa por los puntos y , es decir, mediante .
- El crecimiento de una función en un punto de abscisa se mide mediante la pendiente de la recta tangente a la curva en dicho punto. A dicho valor se le llama derivada de en el punto y se expresa .
Ejercicios propuestos
Ejercicios propuestos: Crecimiento en un punto. Derivada |
Obtención de la derivada de una función en un punto
Hemos dicho que la derivada de una función en un punto es la pendiente de la recta tangente a la curva en dicho punto, y se representa . Podemos obtener dicho valor mediante el concepto de límite:
En esta escena podrás ver cómo se interpreta geométricamente el concepto de derivada de una función en un punto.
Ejemplos: Derivada de una función en un punto
Calcula la derivada de la función en el punto de abscisa
Un poco de historia y explicación gráfica.
Aproximación intuitiva al concepto de función derivable.
Apróximación al concepto de derivada apoyándonos en la existencia o no de la recta tangente en un punto.
Definición rigurosa de derivada de una función en un punto.
Cálculo de derivada de en el punto .
Cálculo de la derivada de en el punto .
Cálculo de la derivada de en el punto .
Cálculo de la derivada de en el punto .
Cálculo de la derivada en un punto de una función a trozos.
Ejercicios propuestos
Ejercicios propuestos: Derivada de una función en un punto |