Plantilla:Tendencias de una función

De Wikipedia

Decimos que una función y=f(x)\; tiende a un valor y_o\; cuando la variable independiente tiende a un valor x_o\;, si los valores de la variable y\; se acercan a y_o\; cuando la variable x\; se acerca a x_o\;.

Simbólicamente:

\lim_{x \to x_o} f(x)=y_0

En la anterior expresión la tendencia de la variable independiente puede ser a +\infty o - \infty en vez de x_o\;. Igualmente, la tendencia de la variable dependiente puede ser a +\infty y - \infty en vez de a un valor y_o\;.

Así cuando, por ejemplo, la variable x\; se haga infinitamente grande y los correspondientes valores de la función se acerquen a un valor y_o\;, escribiremos:

\lim_{x \to +\infty} f(x)=y_0

Plantilla:Ejercicios y videotutoriales

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda