Puntos y vectores el plano (1ºBach)
De Wikipedia
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Sistema de referencia en el plano
Un sistema de referencia del plano consiste en una terna , donde
es un punto fijo, llamado origen, y
una base de vectores del plano.
En este sistema de referencia, cada punto del plano tiene asociado un vector fijo
, llamado vector de posición del punto
.
Si el vector tiene coordenadas
respecto de la base
, el punto
diremos que tiene coordenadas
respecto del sistema de referencia
.
Normalmente trabajaremos con un sistema de referencia en el que la base es ortonormal.
Actividad interactiva: Sistema de referencia en el plano
Actividad: En la siguient escena tenemos un punto ![]() ![]() ![]() ![]() Así, el punto Ejercicio:
|
Coordenadas del vector que une dos puntos
Actividad interactiva: Coordenadas del vector que une dos puntos
Actividad: En la siguient escena tenemos dos puntos ![]() ![]() Las coordenadas del vector Ejercicio:
|
Condición para que tres puntos estén alineados
Condición para que tres puntos estén alineados
- Los puntos del plano
,
y
, están alineados si se cumple:

Los puntos del plano ,
y
, están alineados si los vectores
y
tienen la misma dirección.
Ahora, esto ocurre si los vectores son proporcionales:
