Plantilla:Progresiones geométricas

De Wikipedia

Una progresión geométrica es una sucesión de números en la que cada término se obtiene multiplicando el anterior por una cantidad fija, r\;\!, que llamaremos razón.

Escrito en forma recursiva:

a_n=a_{n-1} \cdot r \ , \ \forall n>1

Por ejemplo, la sucesión u_n\;:

Imagen:prog_geometrica.png

es una progresión geométrica de razón r = 2\;.

Término general de una progresión geométrica

ejercicio

Término general de una progresión geométrica


Sean a_1, a_2, a_3, ..... \;\!términos de una progresión geométrica de razón r\;\!.
Entonces se cumple que:

a_n = a_1 \cdot r^{n-1}

Suma de términos de una progresión geométrica

ejercicio

Suma de términos de una progresión geométrica


La suma de los n primeros términos de una progresión geométrica es:

S_n=\frac{a_1.r^n-a_1}{r-1}

ejercicio

Suma de los infinitos términos de una progresión geométrica


La suma de todos los términos de una progresión geométrica en la que su razón verifica que 0<\; \mid r \mid \; <1 se obtiene así:

S_{\infty}=\frac{a_1}{1-r}

Producto de términos de una progresión geométrica

ejercicio

Producto de n términos de una progresión geométrica


El producto de los n primeros términos de una progresión geométrica es:

P_n=\sqrt{(a_1 \cdot a_n)^n}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda