Plantilla:Progresiones geométricas
De Wikipedia
Una progresión geométrica es una sucesión de números en la que cada término se obtiene multiplicando el anterior por una cantidad fija, , que llamaremos razón.
Escrito en forma recursiva:
Por ejemplo, la sucesión :
es una progresión geométrica de razón .
Progresiones geométricas: definición y ejemplos.
Halla el quinto término de la siguiente progresión geométrica:
Halla el término de una progresión aritmética que viene dada por la siguiente ley de recurrencia:
Actividades en las que aprenderás el concepto de progresión geométrica y a cómo identificarlas.
Extiende sucesiones geométricas.
Extiende sucesiones geométricas con términos negativos y racionales.
Fórmulas recursivas para sucesiones geométricas.
Suma de términos de una progresión geométrica
Suma de términos de una progresión geométrica
La suma de los n primeros términos de una progresión geométrica es:
Efectuamos la siguiente resta:
-
- ______________________________________________________________________________
por tanto:
y despejando
Actividades en las que aprenderás a obtener de los "n" primeros términos de una progresión geométrica.
Fórmula de la suma de los n primeros términos de una progresión geométrica. Ejemplos.
Fórmula de la suma de los n primeros términos de una progresión geométrica. Ejemplos.
Ejemplos y demostración la fórmula de la suma de n términos consecutivos de una progresión geométrica
Suma los n primeros términos de progresión geométrica dada.
Ejercicio resuelto: Suma de términos de una progresión geométrica
Si al comienzo de cada año ingresamos 1000 € en un banco al 4% anual, ¿cuánto dinero tendremos al final del quinto año?
Se trata de un problema típico de aritmética comercial de anualidades de capitalización:
Al comenzar el primer año ingreso 1000 €, que se transforman en al final del quinto año.
Al comenzar el segundo año ingreso 1000 €, que se transforman en al final del quinto año.
Al comenzar el tercer año ingreso 1000 €, que se transforman en al final del quinto año.
Al comenzar el cuarto año ingreso 1000 €, que se transforman en al final del quinto año.
Al comenzar el quinto año ingreso 1000 €, que se transforman en al final del quinto año.
Si sumamos todas esas cantidades:
estaremos sumando los cinco primeros términos de una progresión geométrica con y
Anualidades de capitalización son cantidades fijas que se entregan al principio de cada año para su colocación a interés compuesto con objeto de llegar a constituir un capital al cabo de un determinado número de años.
Anualidades de amortización son pagos fijos que se entregan al final de cada año para su colocación a interés compuesto, con objeto de llegar a extinguir o amortizar una deuda juntamente con sus intereses, en un determinado número de años.
Suma de los infinitos términos de una progresión geométrica
- La suma de todos los términos de una progresión geométrica en la que su razón verifica que se obtiene así:
|
Para la demostración se requiere del concepto de límite. Véase: Algunos límites importantes.
Producto de términos de una progresión geométrica
Producto de n términos de una progresión geométrica
- El producto de los n primeros términos de una progresión geométrica es:
|
Véase en el siguiente videotutorial:
Demostración de la fórmula del producto de n términos de una progresión geométrica