Plantilla:Tipos de poliedros
De Wikipedia
Tabla de contenidos |
Prisma
Un prisma es un poliedro limitado por dos polígonos iguales y paralelos en las bases y paralelogramos en las caras laterales. Prisma (3'22") Sinopsis: Prisma: definición y elementos. Clasificación
Prisma regularUn prisma es regular si su base es un polígono regular. |
Clasificación de los prismas.
Ortoedro
| Ortoedro
|
Pirámide
En esta escena podrás ver el desarrollo de una pirámide y calcular su volumen y su áreas.
- Área y volumen de la pirámide.
- Ejercicios:
- a) Halla el volumen de una pirámide cuya base es un triángulo rectángulo de lados 6, 8 y 10, y cuya altura es igaul al perímetro de la base.
- b) Halla el área total de una pirámide cuadrangular regular de 4 m de arista básica y 6 m de apotema.
Cálculo del área total y el volumen de una pirámide. Ejemplos.
Videotutorial.
Cálculo del área total y el volumen de una pirámide. Ejemplos.
Halla el área y el volumen de un pirámide cuadrangular regular sabiendo que la apotema mide 11 cm y el lado de la base 7 cm.
Halla el área y el volumen de un pirámide hexagonal regular sabiendo que la arista básica mide 5 cm, la altura mide 12 cm y la apotema de la pirámide, 14 cm.
Halla el área de una pirámide regular con base cuadrada, de arista básica 10 cm y altura 12 cm.
Halla el área de una pirámide regular con base hexagonal, de arista básica 16 cm y arista lateral 28 cm.
Ejercicios para calcular volumen y superficie de distintas pirámides.
Propiedad
Si tenemos un prisma y una pirámide con la misma base y la misma altura, entonces el volumen del prisma es igual a tres veces el volumen de la pirámide.
Es evidente si comparamos las fórmulas de los volúmenes de ambas figuras.
Video que muestra de forma práctica cómo el volumen de un cubo es tres veces el volumen de una pirámide con la misma base y altura que las del cubo.
Relación entre el volumen de un prisma y una pirámide
http://mundogenial.comPoliedros simples
Poliedro simple es aquel que no tiene orificios. Un poliedro simple es el que podría hincharse o deformarse (si el material lo permitiera) hasta formar una esfera. En la imagen de la derecha tienes un poliedro que no es simple. Al hincharlo, se transforma en un flotador, en vez de en una esfera. |
Poliedros regulares
Poliedro regular es aquel que cumple:
- Sus caras son polígonos regulares iguales.
- Todos los vértices tienen el mismo orden.
Sólo hay cinco poliedros regulares, los llamados sólidos platónicos:
Videotutorial.
El tetraedro regular:
- Definición.
- Desarrollo plano.
- Área y volumen.
- Ejercicio.
El hexaedro regular:
- Definición.
- Desarrollo plano.
- Área y volumen.
- Ejercicio.
El octaedro regular:
- Definición.
- Desarrollo plano.
- Área y volumen.
- Ejercicio.
En esta escena podrás ver y rotar los poliedros regulares.
Poliedros convexos y cóncavos
- Un poliedro es convexo si al dados dos puntos cualesquiera del poliedro, el segmento que los une es interior al poliedro. En el caso de que dicho segmento se salga del cuerpo se dice el poliedro es cóncavo.
Son poliedros cóncavos, por ejemplo, los poliedros de Kepler-Poinsot:
En esta escena podrás ver y rotar los cuatro poliedros de Kepler-Poinsot.
Poliedros duales
Dado un poliedro, al unir mediante segmentos los centros de cada dos caras contiguas, se obtiene otro poliedro que se llama el poliedro dual del dado.
En esta escena podrás comprobar cuales son los duales de los poliedros regulares.
Construccción del poliedro dual del cubo
Actividades sobre el poliedro dual del tetraedro.
Actividades sobre el poliedro dual del cubo.
Actividades sobre el poliedro dual del dodecaedro.
Poliedros semiregulares
Se llama poliedro semiregular a aquel cuyas caras son polígonos regulares de dos o más tipos y tal que en todos los vértices concurren los mismos polígonos.
Son poliedros semiregulares: