Combinatoria
De Wikipedia
Tabla de contenidos |
Permutaciones
Se llama permutaciones de n elementos, y se representa , al número de diferentes formas en que se pueden ordenar esos n elementos.
Proposición
Las permutaciones de n elementos se pueden calcular con la siguiente fórmula:
Demostración:
Si quiero formar ordenar n elementos, el primer elemento del grupo lo puedo escoger de n maneras distintas (puesto que dispongo de n elementos), el 2º de (n-1) maneras, el 3º de (n-2) maneras, ..., y el n-ésimo, de 1 sola manera. Multiplicando todas las posibilidades obtengo la fórmula.Calcula las permutaciones de 4 elementos sin repetición:
Calcula las permutaciones de 7 elementos sin repetición:
Calcula cuántos números de cuatro cifras diferentes (sin repetir la misma cifra) pueden formarse con los dígitos 3,5,7 y 9.
Di el número de posibles clasificaciones de los 9 nadadores que participan en una prueba de 100 m mariposa.
¿Cuántos números de 5 cifras se pueden formar con 5 dígitos distintos si no se pueden repetir las cifras? (Permutaciones sin repetición)
Permutaciones con repetición
Se llama permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., y se representa , a las distintas formas de ordenar esos n elementos, teniendo en cuenta que los elementos repetidos son indistinguibles.
Proposición
Las permutaciones con repetición de n elementos, donde el primer elemento se repite "a" veces , el segundo "b" veces , el tercero "c" veces, ..., con n=a+b+c+..., se pueden calcular con la siguiente fórmula:
Demostración:
Las permutaciones ordinarias con n elementos son n!. Pero cada elemento repetido "a" veces se puede colocar de a! formas distintas, de manera que debo dividir n! por a! para quedarme solo con las formaciones no repetidas. Lo mismo se hace con los "b", "c", ... elementos repetidos, por lo que habrá que dividir también por b!, c!, ...Calcula las permutaciones de 12 elementos con repetición de 7,3 y 2:
Calcula las permutaciones de 7 elementos con repetición de 3,2 y 2:
Una pareja ha tenido 3 niñas y 1 niño. ¿En cuántos órdenes diferentes los ha podido tener?
¿Cuántas palabras distintas, tengan o no sentido, podemos forma con las letras de la palabra ORDENADOR?
¿De cuántas maneras distintas podemos ordenar 3 bolas verdes, 2 rojas y 1 azul?
Variaciones con repetición
Se llama variaciones con repetición de n elementos tomados de k en k (n ≥ k), y se representa , o bien , al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y se pueden repetir los elementos.
Proposición
Las variaciones con repetición de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:
Demostración:
Si quiero formar grupos de n elementos en los que importa el orden, el primer elemento del grupo lo puedo escoger de n maneras distintas (puesto que dispongo de n elementos), el 2º también de n maneras (pues puedo repetirlo), el 3º también de n maneras, ..., y el k-ésimo, de n maneras distintas. Multiplicando todas las posibilidades obtengo la fórmula.Calcula
Calcula
¿Cuántos números de dos cifras pueden formarse con los dígitos 1, 2 y 3, si se pueden repetir las cifras
Con las cifras 0, 1, 3, 5 y 7, ¿cuántos números de 4 cifras podemos escribir?
Variaciones ordinarias
Se llama variaciones ordinarias (o sin repetición) de n elementos tomados de k en k (n ≥ k), y se representa , o bien , al número de grupos distintos de n elementos que se pueden formar a partir de m elementos dados, de forma que importa el orden y no se pueden repetir los elementos.
Proposición
Las variaciones ordinarias de n elementos tomados de k en k (n ≥ k) se pueden calcular con la siguiente fórmula:
Demostración:
Si quiero formar grupos de n elementos en los que importa el orden, el primer elemento del grupo lo puedo escoger de n maneras distintas (puesto que dispongo de n elementos), el 2º de (n-1) maneras distintas (pues no puedo repetir el anterior), el 3º de (n-2), ..., y el k-ésimo, de (n-k+1) maneras distintas. Multiplicando todas las posibilidades obtengo la fórmula.Calcula
Calcula
¿Cuántos números de dos cifras pueden formarse con los dígitos 1, 2 y 3, si no se pueden repetir las cifras.
Cuántos números de tres cifras no repetidas se pueden formar con los dígitos 2, 3, 4, 5 y 6? ¿Cuántos son pares?¿Cuántos terminan en 45?
En una competición participan 6 corredores pero sólo hay 3 premios distintos (1º, 2º y 3º). ¿De cuántas formas distintas pueden asignarse 3 los premios entre los 6 atletas?