Plantilla:Razones trigonométricas de un ángulo cualquiera

De Wikipedia

Obsérvese como, en el apartado anterior, las coordenadas del punto B son (cos \, \alpha , sen \, \alpha ). Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

  • Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:

B=(cos \, \alpha , sen \, \alpha )

  • Definiremos la tangente del ángulo, como:

tg \, \alpha = \cfrac{sen(\alpha)}{cos(\alpha)}    ,    \alpha \ne 90^\circ \, , 270^\circ

Signo de las razones trigonométricas

ejercicio

Determinación del signo de las razones trigonométricas


  • Signo del coseno: Según en qué cuadrante esté el ángulo, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, el signo del coseno será positivo si está a la derecha de O y negativo si está a la izquierda.
  • Signo del seno: Según el cuadrante en el que esté el ángulo, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Así el signo del seno será positivo si está por encima y negativo si está por debajo.
  • Signo de la tangente: Queda determinado a partir del signo del seno y del coseno mediante la regla de los signos.

Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Razones trigonométricas de un ángulo cualquiera sin usar el círculo unidad

También se pueden definir las razones trigonométricas de un ángulo de cualquier cuadrante sin hacer uso del círculo unidad. Puedes verlo en los siguientes videos:

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda