Estudio gráfico (PACS)
De Wikipedia
← Revisión anterior | Revisión siguiente →
Enlaces internos | Para repasar | Enlaces externos |
Indice CD Alumno 07 Resueltos 07 Descartes Manual Casio | Coordenadas Funciones (SM) Funciones (ppt) Descartes: Test de ejercicios | WIRIS Calculadora |
Tabla de contenidos |
Monotonía
- Una función es creciente en un intervalo I cuando al aumentar la variable independiente en ese intervalo, aumenta la variable dependiente .
- Una función es decreciente en un intervalo cuando al aumentar la variable independiente en ese intervalo, disminuye la variable dependiente .
- Una función es constante en un intervalo cuando al aumentar la variable independiente en ese intervalo, la variable dependiente no varía, siempre toma un mismo valor .
Tutorial en el que se explica el estudio del crecimiento de una función dada su gráfica.
Tutorial en el que se explica el estudio del crecimiento de una función dada su gráfica.
Conceptos de función creciente, decreciente y constante.
Estudio del crecimiento de una función a partir de su gráfica.
Estudio del crecimiento de una función a partir de su gráfica.
Estudio del crecimiento de una función a partir de su gráfica.
Estudio del crecimiento de una función a partir de su gráfica.
Actividades con las que aprenderás a determinar los intervalos de crecimiento y decrecimiento de una función.
En esta escena podrás ver cuando una función es creciente, decreciente o constante.
Determina los intervalos de crecimiento y decrecimiento de una función.
Se llama variación de una función en un intervalo , a lo que varía la variable dependiente de un extremo a otro del intervalo:
Extremos relativos: Máximos y mínimos
- Una función tiene un máximo relativo en un punto cuando es mayor que los valores que toma la variable en un intervalo entorno al punto.
- Una función tiene un mínimo relativo en un punto cuando es menor que los valores que toma la variable en un intervalo entorno al punto.
Tutorial en el que se explica el estudio de máximos y mínimos (relativos y absolutos) de una función dada su gráfica.
Tutorial en el que se explica el estudio de máximos y mínimos (relativos y absolutos) de una función dada su gráfica.
Conceptos de máximo y mínimo relativos.
Estudio de los puntos extremos de una función a partir de su gráfica.
Estudio de los puntos extremos de una función a partir de su gráfica.
Estudio de los puntos extremos de una función a partir de su gráfica.
Estudio de los puntos extremos de una función a partir de su gráfica.
Actividades con las que aprenderás a determinar los máximos y mínimos de una función dada gráficamente.
En esta escena podrás ver cuando una función alcanza un máximo o un mínimo.
Interpreta la siguiente gráfica que muestra las temperaturas a lo largo de un día de invierno en un pueblo de Valladolid. Averigua sus máximos y mínimos relativos.
Construye una gráfica que cumpla ciertas condiciones sobre los puntos por los que pasa. Se exigira, por ejemplo, que tenga máximos o mínimos en ciertos puntos, que tenga ciertos puntos de corte con los ejes, etc.
Unos alumnos de E.S.O. disponen de una cuerda de 80 metros de longitud con la que quieren construir rectángulos en el patio de su centro.
- Haz una tabla de valores donde se relacione la base de los rectángulos y su área.
- Representa gráficamente la función.
- Halla una expresión que te permita calcular el área de cualquiera de esos rectángulos, conocida su base.
- ¿Cuál es el dominio de esta función?
- ¿Para qué valor del lado se consigue un rectángulo de área máxima? ¿Qué tiene de peculiar ese valor?
Máximos y mínimos relativos o locales.
Máximos y mínimos absolutos.
Ejercicios
Interpreta la gráfica dada.
Interpreta la gráfica dada.
Problemas verbales de interpretación de gráficas.
Ejercicios resueltos: Crecimiento. Máximos y mínimos |
Tendencias
Decimos que una función tiende a un valor cuando la variable independiente tiende a un valor , si los valores de la variable se acercan a cuando la variable se acerca a .
Simbólicamente:
En la anterior expresión la tendencia de la variable independiente puede ser a o en vez de . Igualmente, la tendencia de la variable dependiente puede ser a y en vez de a un valor .
Así cuando, por ejemplo, la variable se haga infinitamente grande y los correspondientes valores de la función se acerquen a un valor , escribiremos:
En esta escena podrás estudiar la tendencia de una función que relaciona la temperatura de un recipiente de agua que se va enfriando y el tiempo que ha transcurrido.
Estudia la tendencia del crecimiento de una población de búhos:
En ocasiones nos interesa saber cómo se comporta la función cuando la variable independiente aumenta mucho o disminuye mucho o cuando se acerca a una valor concreto. A los valores a los que se aproxima es lo que llamamos tendencia de la función. Observa la gráfica de la población de búhos (en miles) en un territorio en función del tiempo. Mueve el punto P para ayudarte a contestar las preguntas:
a) ¿Cuál es ese valor? (Nota: En el eje Y, 1 cuadrito = 1 millar de búhos)
Lo mismo ocurre cuando se hace cada vez más negativa la variable independiente, aunque esta tendencia no es el mismo valor.
b) ¿Cuál es ese valor?
Estudia la tendencia de la siguiente función:
La tendencia de una función se estudiar también cuando la x se acerca a un número real en vez de a (+/-)infinito. En la escena siguiente recorre la función con el punto P y apunta en tu cuaderno las tendencias de la función.
b) ¿Y si x se hace muy grande negativamente, es decir, se aproxima a ?
c) ¿A qué valor tiende la función cuando nos aproximamos a 2?
Estudio de las tendencias de una función a partir de su gráfica.
Estudio de las tendencias de una función a partir de su gráfica.
Estudio de las tendencias de una función a partir de su gráfica.
Estudio de las tendencias de una función a partir de su gráfica.
Actividad: Tendencia de una función
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Ejercicio Resuelto: Tendencia de una función
1. Compramos un coche por 12.000 €, y cada año que pasa su precio se devalua un 20%.
- a) Haz una tabla que exprese el precio del coche durante los próximos años.
- b) Representa gráficamente los resultados del apartado a).
- c) Encuentra una fórmula que exprese esta función.
- d) ¿Cómo es la variable independiente: continua o discreta?
- e) ¿Cuál es el dominio de esta función?. ¿Y su imagen?
- f) ¿Cual es la tendencia de esta función segun pasan los años?
- g) Describe el crecimiento e indica si tiene máximos o mínimos.
- a) Tabla de valores:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 12.000 | 9.600 | 7.680 | 6.144 | 4.915,2 | 3.932,2 | 3.145,7 | 2.516,6 |
- b) Representación gráfica:
- c) Continua.
- d) (€)
- e) ; .
- f) La función tiende a 0 a medida que transcurre el tiempo.
- g) Es decreciente en todo su dominio. Tiene un máximo en x = 0 y no tiene mínimos.
- h) No es periódica.
Periodicidad
Una función es periódica si su gráfica se va repitiendo a intervalos. Al menor valor posible, T, de la longitud de dicho intervalo, se le llama periodo. Se cumple: |
Actividades con las que aprenderás a determinar si una función es periódica y a hallar su período a partir de su gráfica.
Actividad: Funciones periódicas
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Estudio de la periodicidad de una función dada por una gráfica.
Simetrías
Continuidad
- Cuando la gráfica de una función tiene saltos bruscos (no se puede dibujar de un solo trazo) decimos que es discontinua. En caso contrario se dice que es continua. Los puntos donde se producen los saltos se llaman discontinuidades.
- Una función diremos que es continua en un intervalo si no presenta ninguna discontinuidad en dicho intervalo, aunque pueda presentar alguna fuera del mismo.
Ejemplos: Continuidad
De las siguientes funciones, indica cuáles son continuas y cuáles no. Enumera las discontinuidades.
Solución:
Las funciones a) y c) son continuas.
La b) es discontinua con discontinuidades en y .Actividades en las que aprenderás el concepto de continuidad de una función.
Concepto de función continua y de función continua en un intervalo. Ejemplos.
Tutorial en el que se explica el estudio de la continuidad de una función dada su gráfica, así como los tipos de discontinuidades que existen.
Nota 1: En este tutorial se definen algunos "tipos de discontinuidades" que nosotros no veremos hasta proximos cursos. No obstante, son bastante intuitivos y se podrán entender sin mayor problema.
Nota 2: A lo largo del tutorial se ve un ejemplo en el que la función no está definida en un intervalo y se dice que la función es discontinua en todo ese intervalo. En cursos superiores, diremos que en esos intervalos donde la función no está definida "no tiene sentido" hablar de continuidad ni de discontinuidad.
Estudio de la continuidad de una función a partir de su gráfica.
Estudio de la continuidad de una función a partir de su gráfica.
Estudio de la continuidad de una función a partir de su gráfica.
Estudio de la continuidad de una función a partir de su gráfica.
Actividad: Continuidad de funciones Observa las gráficas de las siguientes funciones y si tienen o no discontinuidades:
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|