Figuras semejantes. Escala (PACS)
De Wikipedia
← Revisión anterior | Revisión siguiente →
Tabla de contenidos[esconder] |
Figuras semejantes
- Dos figuras son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes. Esto lo expresaremos matemáticamente diciendo que:
- Los segmentos correspondientes (homólogos) son proporcionales.
- Sus ángulos correspondientes (homólogos) son iguales.
- Al ser los segmentos homólogos proporcionales, se cumple que la longitud de uno de ellos se obtiene multiplicando la longitud del correspondiente por una cantidad fija, llamada razón de semejanza.
(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.
Ejemplos: Figuras semejantes
- Tenemos dibujado en un papel un rectángulo de dimensiones 12 cm x 8 cm. Hacemos una fotocopia reducida y obtenemos otro rectángulo de dimensiones 3 cm x 2 cm. Comprueba que son semejantes y calcula la razón de semejanza. Calcula el procentaje de reducción aplicado en la fotocopia.
- Dos triángulos semejantes tienen una razón de semejanza de 0.75. Si los lados del mayor miden 12, 8 y 16 cm, respectivamente, ¿cuánto miden los lados del menor?
Relación entre las áreas y los volúmenes de dos figuras semejantes
Propiedades
Si dos figuras son semejantes y k es la constante de proporcionalidad, entonces:
- La razón entre sus áreas es k2.
- La razón entre sus volúmenes k3.
Ejemplos: Relación entre las áreas y los volúmenes de dos figuras semejantes
- Comprueba que si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.
- Comprueba que si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.
Ejercicio: Relación entre las áreas de dos figuras semejantes En una pizzería, la pizza pequeña tiene 23 cm de diámetro y es para una persona. Sin embargo, la pizza familiar tiene 46 cm de diámetro, justo el doble que la pequeña, pero dicen que es para 4 personas. ¿Nos están engañando? La respuesta en la siguiente actividad: |
Escala
Cuando representamos una casa en un plano, un coche en una maqueta o la superficie terrestre en un mapa, estamos representando figuras semejantes a las reales. La razón de semejanza entre dichas figuras diremos que es la escala del mapa, de la maqueta o del plano.
La escala es el cociente entre la longitud de un segmento en la reproducción y el correspondiente segmento en la realidad. Esto es, la escala es la razón de semejanza entre la reproducción y la realidad.
|
Tipos de escalas
Existen tres tipos de escalas:
- Escala natural: Cuando el tamaño del objeto representado en el plano coincide con la realidad. (1:1).
- Escala de reducción: Se utiliza cuando el tamaño del objeto en el plano es menor que la realidad. Esta escala se utiliza para representar piezas (1:2 ó 1:5), planos de viviendas (1:50), mapas físicos de territorios donde la reducción es mucho mayor (1:50.000 ó 1:100.000).
- Escala de ampliación: Se utiliza cuando hay que hacer el plano de piezas muy pequeñas o de detalles de un plano. En este caso el valor del numerador es más alto que el valor del denominador. Ejemplos: 2:1 ó 10:1.
Ejercicios
Triángulos semejantes
Teorema de Tales
Teorema de Tales
Triángulos en la posición de Tales
Dos triángulos ABC y A'B'C', con sus lados paralelos y encajados con un vértice común, se dice que están en la posición de Tales |
Triángulos en la posición de Tales
Dos triángulos son semejantes si y sólo si están en la posición de Tales.
Criterios de semejanza de triángulos
Criterios de semejanza de triángulos
- Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales:
- Dos triángulos son semejantes si tienen dos lados proporcionales e igual el ángulo comprendido:
- Dos triángulos son semejantes si tienen los lados proporcionales:
Aplicaciones de los criterios de semejanza
Actividad Interactiva: Aplicaciones de los criterios de semejanza
Actividad 1: Cálculo de la altura conocida la sombra.
Actividad 2: Halla la altura de un árbol con la ayuda de un espejo y una cinta métrica.
Actividad 3: Semejanza en triángulos rectángulos.
|
Áreas y volúmenes de figuras semejantes
La relación entre el área A1, el volumen V1 de una figura F1, semejante a otra F2 de área A2 y volumen V2 y con razón de semejanza r es:
|