Números complejos: Definición (1ºBach)
De Wikipedia
Menú:
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Necesidad de ampliación del campo numérico
Hay ecuaciones como

que no tienen solución en el conjunto de los números reales


Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los números complejos. Para ello vamos a empezar dando sentido a las raíces de números negativos.
Unidad imaginaria
Se denomina unidad imaginaria a . Se designa por la letra

Con esta definición, la ecuación anterior ahora si tiene solución "imaginaria":

Potencias de la unidad imaginaria
A partir de se repiten cíclicamente los valores.
El conjunto de los números complejos
Definimos el conjunto de los números complejos de la siguiente manera:

Forma binómica de un número complejo
- La expresión
se denomina forma binómica de un número complejo. En ella, a
se le llama parte real y a
parte imaginaria.
- Si
, lo que tenemos es un número real, por tanto
.
- Si
, lo que tenemos no es un número real, es un número imaginario.
- Si
y
, se le llama número imaginario puro.
- Dos números complejos en forma binómica son iguales si tienen iguales sus partes reeales y sus partes imaginarias.

Opuesto y conjugado de un complejo
- Se define el opuesto de un complejo
como el número complejo
.
- Se define el conjugado de un complejo
como el número complejo
.