La elipse (1ºBach)

De Wikipedia

Elementos de la elipse

Una una elipse de focos F\, y F'\,, con ejes de simetría AA'\, y BB'\,, que se cortan en el centro O\, de la elipse, determina los siguientes segmentos:

  • a=\overline{OA}=\overline{OA'} (semieje mayor).
  • b=\overline{OB}=\overline{OB'} (semieje menor).
  • c=\overline{OF}=\overline{OF'} (semidistancia focal).

ejercicio

Propiedades


  • k=2a\, (constante de la elipse)
  • a=\overline{BF}=\overline{BF'}
  • a^2=b^2+c^2\,
  • c<a\,
Imagen:Elipse.png

Excentricidad de la elipse

La escentricidad de la elipse es el cociente entre la distancia focal y el eje mayor:

exc=\cfrac{c}{a}

ejercicio

Propiedades


  • 0<exc<1\,.
  • La excentricidad mide el achatamiento de la elipse: cuanto más próxima a 1 más se parece a a una circunferencia.

Ecuación reducida de la elipse

ejercicio

Ecuación reducida de la elipse


La ecuación de una elipse con semieje mayor a\, y semieje menor b\,, con centro en el origen de coordenadas y focos en el eje de abscisas es:

\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda