La hipérbola (1ºBach)

De Wikipedia

Revisión de fecha 18:49 31 mar 2009; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Tabla de contenidos

Elementos de la hipérbola

Una una elipse de focos F\, y F'\,, con ejes de simetría AA'\, y su perpendicular pasando por el centro O\, de la hipérbola, determina los siguientes segmentos:

  • a=\overline{OA}=\overline{OA'} (semieje).
  • c=\overline{OF}=\overline{OF'} (semidistancia focal).
  • r\, y r'\, (asíntotas)

ejercicio

Propiedades


  • k=2a\, (constante de la hipérbola)
  • c^2=a^2+b^2\,
  • c>a\,
Imagen:Hiperbola.png

ejercicio

Actividad interactiva: Propiedad de la elipse


Actividad 1: En la siguiente escena vamos a ver una propiedad de la elipse en la que veremos como cualquier "rayo de luz" que parta de uno de sus su focos (considerando que la elipse se comporta como un espejo) se refleja en la elipse y va a parar al otro foco.

Excentricidad de la elipse

La escentricidad es un parámetro que determina el grado de desviación de una sección cónica con respecto a una circunferencia.

La excentricidad de la elipse es el cociente entre la distancia focal y el eje mayor:

e=\cfrac{c}{a}

ejercicio

Propiedades


  • 0<e<1\,.
  • Una elipse más se parece a a una circunferencia, cuanto más se aproxime a 0 su excentricidad.

ejercicio

Actividad interactiva: Excentricidad de la elipse


Actividad 1: En la siguiente escena vamos a ver como se ve afectada la elipse si modificamos su excentricidad.

Ecuaciones de la elipse

Ecuación reducida de la elipse

ejercicio

Ecuación reducida de la elipse


La ecuación de una elipse con semieje mayor a\, y semieje menor b\,, con centro en el origen de coordenadas y focos en el eje de abscisas es:

\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1

ejercicio

Actividad interactiva: Ecuación reducida de la elipse


Actividad 1: En la siguiente escena vamos a calcular la ecuación reducida de la elipse de semiejes 5 y 9.

Ecuación de la elipse con los focos en el eje Y

ejercicio

Ecuación de la elipse con los focos en el eje Y


  • La ecuación de una elipse con semieje mayor a\, y semieje menor b\,, con centro en el origen de coordenadas y focos en el eje de ordenadas es:

\cfrac{x^2}{b^2}+\cfrac{y^2}{a^2}=1

  • Su excentricidad es: e=\cfrac{a}{c}

Ecuación de la elipse con el centro desplazado del origen de coordenadas

ejercicio

Ecuación de la elipse con el centro desplazado del origen


La ecuación de una elipse con semiejes a\, y b\, y centro O(\alpha,\beta)\, es:

\cfrac{(x-\alpha)^2}{a^2}+\cfrac{(y-\beta)^2}{b^2}=1

ejercicio

Actividad interactiva: Ecuación reducida de la elipse


Actividad 1: En la siguiente escena vamos a calcular la ecuación de la elipse de centro O(3,-1) y semiejes 5 y 2.

Construcciones de la elipse

ejercicio

Actividad interactiva: Construcciones de la elipse


Actividad 1: Método del jardinero.
Actividad 2: La elipse como envolvente (1).
Actividad 3: La elipse como envolvente (2).
Actividad 4: La elipse a partir de dos circunferencias.
Actividad 5: La elipse como hipotrocoide.
Actividad 6: La elipse mediante el compás de Arquímedes.
Actividad 7: La elipse a partir de dos circunferencias tangentes interiores.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda