Plantilla:Utilidad de la derivada (1ºBach)
De Wikipedia
Tabla de contenidos |
Estudio del crecimiento


Estudio de los puntos extremos
Extremos relativos

Ejemplos: Determinación de los extremos relativos
Cálculo de máximos y mínimos relativos

- 10 ejemplos

- 8 ejemplos

- 4 ejemplos

- 3 ejemplos

- 5 ejemplos

- 3 ejemplos
Extremos absolutos

Ejemplos: Determinación de máximos y mínimos absolutos
Cálculo de máximos y mínimos absolutos

- 2 ejemplo2
Problemas de optimización

Problemas de optimización
Ejemplos: Problemas de optimización

- 4 ejemplo2

- 3 ejemplo2

- 3 ejemplo2

- 2 ejemplo2
Actividades interactivas: Problemas de optimización
Problema 1: Hallar las dimensiones del rectángulo de área máxima que puede inscribirse en un triángulo isósceles cuya base (lado desigual) mide 8 cm y la altura correspondiente 3 cm (suponiendo que un lado del rectángulo está sobre la base del triángulo).
Actividad: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Repite el proceso para un triángulo de 6 cm de base y 5 cm de altura. Experimenta e intenta encontrar alguna regularidad en las soluciones.
Problema 2: Queremos construir una caja (sin tapa), a partir de una cartulina cuadrada de 6 dm de lado, a la que se recortarán las esquinas. Hallar las dimensiones de las citadas esquinas para que el volumen de la caja sea máximo.
Actividad: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Repite el proceso para una cartulina cuadrada de 4 cm de lado. ¿Y si la cartulina es un rectángulo de dimensiones 8x5 cm?
GUIÓN DE TRABAJO:
Problema 3a: Queremos construir una lata de un tercio de litro de capacidad.
¿Cuáles serán las dimensiones de la lata más barata (en cuanto a superficie de hojalata)?.
Problema 3a: ¿Y si la hojalata para las tapas cuesta el doble que la destinada a la cara lateral? Actividad: Problema 3a: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 3b:
Problema 4a: De todas las rectas que pasan por el punto (1,2), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.
Problema 4b: De todas las rectas que pasan por el punto (a,b), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima. Actividad: Problema 4a: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 4b: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Cambia el punto de apoyo de las rectas (inicialmente (3,1)) por otro y observa cómo varía la solución:
Problema 5: Un triángulo isósceles tiene el lado desigual de 12 cm y la altura relativa a ese lado de 5 cm. Encontrar un punto sobre la altura tal que la suma de distancias a los tres vértices sea mínima..
Actividad: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 6: Dada la función definida en el intervalo [1,e] por
![]() Actividad: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 7a: En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. ¿Cuál debe ser la longitud de esa cuerda para que el área del trapecio ABDC sea máxima?
Actividad: Problema 7a: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 7b: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 8a: Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a 3 km/h y corre por la arena a 10 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.
Problema 8b: Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a v1 km/h y corre por la arena a v2 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible. Actividad: Problema 8a: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 8b: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 9a: Divide el número 8 en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.
Problema 9b: Divide el número n en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.(Este es uno de los problemas que Ferrari puso a Tartaglia en su histórico duelo de problemas)
Actividad: Problema 9a: Observa la figura. Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
Problema 9b: Observa la figura. Elige un valor para n (mediante el correspondiente deslizador). Mueve el punto verde y observa los cambios:
Haz clic derecho sobre el punto citado y activa "el trazo". Vuelve a mover el punto verde:
|
Para ampliar

Calculo de la velocidad instantanea de un móvil.

Video tutorial de matematicasbachiller.com
Ejemplos: La sustancia de la derivada
Aproximaciones de números

1 ejemplo

3 ejemplos

Calculo de la variación porcentual.

Video tutorial de matematicasbachiller.com