Plantilla:Raiz de 2 no es racional
De Wikipedia
Proposición
- El número es irracional.
Vamos ha utilizar un tipo de demostración denominado "por reducción al absurdo". Vamos a suponer que es racional y llegaremosa una conclusión sin sentido. Esto demostraría que no puede ser racional sino irracional.
Por tanto, supongamos que es racional, o sea, que existe una fracción de números enteros que es igual a . Dicha fracción la podemos suponer irreducible, ya que siempre es posible simplificarla.
Elevamos al cuadrado los dos miembros de la igualdad:
Multiplicamos por los dos miembros de la igualdad:
Esta expresión nos dice que es par, ya que resulta de multiplicar 2 por otro número.
Pero es un cuadrado perfecto, o sea es un número entero al cuadrado, luego si uno de sus factores es el 2, el 2 tiene que estar como mínimo al cuadrado, o sea dos veces.
Por tanto como ya hay un 2 en la igualdad delante de , el otro 2 tiene que estar en el
Eso quiere decir que también tiene que ser par, y por tanto también es par.
Pero si es par y también, la fracción no es irreducible, como habíamos supuesto.
Ya hemos llegado al absurdo.