Fórmulas trigonométricas (1ºBach)
De Wikipedia
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Razones trigonométricas de la suma de dos ángulos
Razones trigonométricas de la suma de dos ángulos
I.1:
I.2:
I.3:

Fórmulas trigonométricas de la suma de dos ángulos con demostración.
Ejemplo: Razones trigonométricas de la suma de dos ángulos
Calcula el valor exacto de (sin calculadora)


Seno, coseno y tangente de la suma de tres ángulos.

Hallar las razones trigonométricas de θ + μ sabiendo que θ y μ son del segundo cuadrante y que senθ = 1 / 2 y que cosμ = − 2 / 3.

Demostrar que si A+B+C=180º, entonces tg A + tg B + tg C = tg A · tg B · tg C.
Razones trigonométricas de la diferencia de dos ángulos
Razones trigonométricas de la diferencia de dos ángulos
II.1:
II.2:
II.3:
Para las demostraciones basta sustituir por
y aplicar las fórmulas de la suma (I.1, I.2 y I.3) y tener en cuenta las relaciones entre las razones trigonométricas de un ángulo y su opuesto:

Fórmulas trigonométricas de la diferencia de dos ángulos con demostración.
Ejemplo: Razones trigonométricas de la diferencia de dos ángulos
Calcula el valor exacto de (sin calculadora)

Razones trigonométricas del ángulo doble
Razones trigonométricas del ángulo doble
III.1:
III.2:
III.3:
Basta utilizar las fórmulas de la suma (I.1, I.2 y I.3) y hacer

Ejemplo: Razones trigonométricas del ángulo doble
Calcula el valor de a partir de las razones trigonométricas de 60º.

Razones trigonométricas del ángulo mitad
Razones trigonométricas del ángulo mitad
IV.1:
IV.2:
IV.3:
Teniendo en cuenta que y utilizando la fórmula III.2 del coseno del ángulo doble, tenemos:

que combinado con la fórmula fundamental, nos da el siguiente sistema:
Sumando y restando ambas ecuaciones, tenemos las siguientes expresiones:



Fórmulas trigonométricas del ángulo doble y del ángulo mitad con demostración.
Ejemplo: Razones trigonométricas del ángulo mitad
Calcula el valor exacto de (sin calculadora).


- Determinar el sen3θ en función del senθ.
- Determinar el cos3θ en función del cosθ.

Videotutorial.
Transformaciones de sumas y diferencias de senos y cosenos en productos
Transformaciones de sumas en productos
V.1:
V.2:
V.3:
V.4:
V.1 y V.2:
Partiendo de las expresiones del I.1 y II.1 del seno de una suma y de una diferencia:
- I.1:
- II.1:
Sumando y restando ambas expresiones, obtenemos:
- Sumando:
[1]
- Restando:
[2]
Hacemos los siguientes cambios de variable:
Resolviendo este sistema:

Videotutorial.
Ejercicios propuestos
Ejercicios propuestos: Fórmulas trigonométricas |