Lugares geométricos (1ºBach)
De Wikipedia
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Lugar geométrico
Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
Vamos a estudiar a continuación algunos lugares geométricos como la mediatriz de un segmento o la bisectriz de un ángulo. En cada caso buscaremos una ecuación que describa a dicho lugar geométrico.
Mediatriz de un segmento
La mediatriz de un segmento , es el lugar geométrico de los puntos , que equidistan de los extremos y .
Proposición La mediatriz de un segmento es una recta. Demostración: Para hallar la ecuación de la mediatriz AB, siendo y tenemos que hallar la ecuación del lugar geométrico Para ello escribiremos la fórmula de la distancia entre dos puntos: Elevando ambos miembros al cuadrado, desarrollando los cuadrados de los binomios y simplificando, comprueba que queda la ecuación: Por tanto, la ecuación de la mediatriz del segmento AB es la ecuación de una recta. |
Ejemplo: Mediatriz de un segmento
Halla la ecuación de la mediatriz del segmento de extremos y y represéntala gráficamente.
Para hallar la ecuación del lugar geométrico
escribiremos la fórmula de la distancia entre dos puntos:
Elevando ambos miembros al cuadrado, desarrollando los cuadrados de los binomios y simplificando, comprueba que queda la ecuación:
Por tanto, la mediatriz del segmento es una recta.
Bisectriz del ángulo entre dos rectas
La bisectriz del ángulo que forman las rectas y , es el lugar geométrico de los puntos , que equidistan de los lados y .
Por como se ha definido la bisectriz, ésta divide al ángulo que forman las rectas en dos ángulos iguales. Además, como dos rectas determinan dos parejas de ángulos iguales, todo par de rectas determinan dos bisectrices. |
Ejemplo: Bisectriz del ángulo entre dos rectas
Halla las ecuaciones de las bisectrices del ángulo que forman las rectas y , y la represéntalas gráficamente.
Para hallar la ecuación del lugar geométrico
escribiremos la fórmula de la distancia de un punto a una recta:
De aquí salen dos ecuaciones, ya que si , se puede dar que o que
Así, las dos ecuaciones resultantes son:
o bien
Por tanto, dos rectas, al determinar dos ángulos, dan lugar a dos bisectrices, que son rectas perpendiculares. En la siguiente escena tienes representadas en rojo la segunda y en gris la primera.
Las bisectrices de los ángulos determinados por dos rectas están formadas por los puntos que equidistan de ambas rectas.
Determina la bisectriz del ángulo entre dos rectas dadas en ecuaciones generales.
Determinamos el "incentro" de un triángulo de vértices conocidos. Cae millones de veces todos los años en examen. No es admisible dejarlo escapar.