Plantilla:Definición de función
De Wikipedia
Concepto de función
- Una función es una relación entre dos variables (por ejemplo,
e
) que a cada valor de
le asigna un único valor de
.
- La variable
se llama variable independiente y la variable
se llama variable dependiente, porque su valor depende de
.
- Se dice que
es función de
y lo representamos por
. También se dice que
es la imagen de
mediante la función
.
En los siguientes videos se explican los conceptos básicos sobre funciones que trataremos a lo largo de este tema.
Formas de expresar una función
Hay varias formas de expresar una función:
- Mediante un enunciado que explique la relación que existe entre las variables.
- Mediante una ecuación que relacione las variables.
- Mediante una tabla que contenga los valores de las variables, emparejados.
- Mediante una gráfica, representada en unos ejes cartesianos con una escala adecuada. Sobre el eje horizontal (eje de abscisas) representamos la variable independiente x, y sobre el eje vertical (eje de ordenadas) la variable dependiente
. Cada punto de la gráfica es generado por una pareja de valores
e
, que son sus coordenadas
, su abcisa y su ordenada.
Veamos unos ejemplos:
Actividades: Formas de expresar una función
1. En la papelería de la esquina compramos bolígrafos a 0.30 € cada uno. Relaciona el número de bolígrafos comprados y el precio de la compra.
2. Vamos al mercado a comprar patatas. El precio de 1 kg es de 0.30 €. Relaciona el número de kilos de patatas adquiridos y su coste.
|
En la actividad anterior hemos podido ver que:
La variable independiente puede ser:
- Discreta: Si entre dos valores de la variable hay solo un número finito de valores que puede tomar. Su gráfica está formada por puntos separados.
- Continua: Si entre dos valores de la variable hay infinitos valores que puede tomar. Su gráfica está formada por trazos.
Actividad: Tablas En la actividad anterior hemos trabajado con la función y=0.30x:
|
Actividades Interactivas: Interpretación de gráficas
Actividad 1: Determina si son o no son funciones las siguientes gráficas.
Actividad 2: Función cuya gráfica es una recta.
Actividad 3: Función cuya gráfica no es una recta.
|
Ejercicios
Ejercicio: Funciones y gráficas 1. La siguiente gráfica describe el vuelo de un águila desde que sale del nido hasta que vuelve a él con una presa que caza durante el trayecto.
2. Poner una anuncio por palabras cuesta una cantidad fija de 0.50 € y 0.05 € por cada palabra.
|