Funciones arco (1ºBach)
De Wikipedia
Menú:
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 261)
Función arcoseno
La función seno no es inyectiva, pero si restringimos su dominio al intervalo entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcoseno.
La función arcoseno se define como ![]()
donde |
Función arcocoseno
La función coseno no es inyectiva, pero si restringimos su dominio al intervalo entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcocoseno.
La función arcocoseno se define como ![]()
donde | Imagen:Arccos.jpg Funciones coseno y arcocoseno. Observa la simetría entre ambas. |
Función arcotangente
La función tangente no es inyectiva, pero si restringimos su dominio al intervalo entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcoseno.
La función arcotangente se define como ![]()
donde |
entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcoseno.
![\begin{matrix} f:[-1,1] \rightarrow [-\cfrac{\pi}{2},\cfrac{\pi}{2}\,] \\ \, \qquad \qquad \qquad \ \ \ x \ \ \ \rightarrow \ \ \ \ y=arcsen(x) \end{matrix}](/wikipedia/images/math/c/2/1/c21cb86da8f59e167fb77175a689f552.png)
es el ángulo comprendido entre
y
tal que su seno es igual a
e
entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcocoseno.
![\begin{matrix} f:[-1,1] \rightarrow [0,\pi]\, \\ \, \qquad \qquad \qquad \ \ \ \ \ x \ \ \ \rightarrow \ \ \ \ y=arccos(x) \end{matrix}](/wikipedia/images/math/6/6/f/66f0ea8fa1e7526b22d5cf748fe4f856.png)
es el ángulo comprendido entre
y
tal que su coseno es igual a
entonces es biyectiva y tiene inversa. A su inversa la llamaremos arcoseno.

es el ángulo comprendido entre 
