Razones trigonométricas de ángulos cualesquiera (1ºBach)
De Wikipedia
Tabla de contenidos[esconder] |
(Pág. 107)
Angulos orientados
Un ángulo orientado es aquel que, en un sistema de coordenadas cartesianas, está generado por el giro de una semirecta que parte del semieje positivo de las X. (Fig. 1)
Los ejes cartesianos dividen al plano en cuatro regiones denominadas cuadrantes:
|
Circunferencia goniométrica
Llamaremos circunferencia goniométrica a la circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con centro en el origen de coordenadas, O.
Sobre la circunferencia goniométrica situaremos nuestro ángulo orientado, ![]() ![]() Teniendo en cuenta que |
Razones trigonométricas de un ángulo cualquiera
Obsérvese como, en el apartado anterior, las coordenadas del punto B son . Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:
- Dado un ángulo
, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:

- Definiremos la tangente del ángulo, como:


Signo de las razones trigonométricas
Determinación del signo de las razones trigonométricas
- Signo del coseno: Según en qué cuadrante esté el ángulo, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, el signo del coseno será positivo si está a la derecha de O y negativo si está a la izquierda.
- Signo del seno: Según el cuadrante en el que esté el ángulo, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Así el signo del seno será positivo si está por encima y negativo si está por debajo.
Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:
Relaciones fundamentales de la trigonometría (ángulos de cualquier cuadrante)
Las relaciones fundamentales de la trigonometría, ya estudiadas anteriormente, siguen siendo válidas con las definiciones dadas para ángulos de cualquier cuadrante.
Ejercicios propuestos
Ejercicios propuestos: Razones trigonométricas de ángulos cualesquiera |