Límite de una función (2ºBach)

De Wikipedia

Tabla de contenidos

Límite de de una función en un punto

El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.

Definición informal de límite

De manera informal, diremos que una función f ~ tiene límite L~ en c~ , o que f ~ tiende a L ~ cuando x~ se acerca a c ~, si se puede hacer que f(x)~ esté tan cerca como queramos de L ~, haciendo que x~ esté suficientemente cerca de c~, pero sin llegar a c~.

Definición formal de límite

Los conceptos cerca y suficientemente cerca son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:

El límite de una función f(x)\;, cuando x~ tiende a c~, es L ~, si y sólo si, para todo \varepsilon > 0 \;, existe un \delta > 0 \;, tal que para todo número real x~ del dominio de la función, si 0 < |x-c| < \delta \;, entonces |f(x)-L| < \varepsilon \;.

Esto, escrito en notación formal:

\lim_{x\to c}  \, \,f(x) = L\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}(f), \,\,0<|x-c|<\delta \Rightarrow |f(x)-L|<\varepsilon
Visualización de los parámetros utilizados en la definición de límite.
Aumentar
Visualización de los parámetros utilizados en la definición de límite.
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.
Aumentar
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.

Esta es una formulación estricta del concepto de límite de una función real en un punto de acumulación del dominio de la función y se debe al matemático francés Luis Cauchy.

ejercicio

Límite de una función en un punto


Demostrar que \lim_{x\to 2}(3x-5)=1 usando la definición formal de límite.

ejercicio

Función sin límite


La función de Dirichlet, D:\mathbb{R}\to\mathbb{R} definida como:

D(x) = \begin{cases} c & \mathrm{para \ } x \ \mathrm{racional} \\ d & \mathrm{para \ } x \ \mathrm{irracional} \\ \end{cases}

no tiene ningún número a\; en el dominio para el cual exista el \lim_{x \to a}f(x).

Videotutoriales

Límites laterales

Límites infinitos

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda