Plantilla:Sistemas de inecuaciones lineales con dos incógnitas
De Wikipedia
- Un sistema de inecuaciones lineales con dos incógnitas es un conjunto de inecuaciones lineales con una incógnita.
- Una solución de este tipo de sistemas es un punto del plano que satisface todas las inecuaciones simultaneamente.
Determina si el punto (2,5) es solución del sistema
Un pastelito requiere 35 gramos de azúcar y 50 gramos de harina, mientras que un panquecito requiere 30 gramos de azúcar y 65 gramos de harina. Susana necesita usar al menos 460 gramos de azúcar para hacer pastelitos y panquecitos, y no quiere usar más de 970 gramos de harina.
Sea C el número de pastelitos y M el de panquecitos que hace. Escribe un sistema de inecuaciones que represente las condiciones de Susana. Ten e cuenta que la primera inecuación debe representar la condición basada en el número de gramos de azúcar y la segunda debe representar la condición basada en el número de gramos de harina.
Flor quiere hacer mesas y sillas. Cada mesa está hecha con el mismo número de tablas de madera y clavos. Lo mismo ocurre con cada silla, aunque los número varían con respecto a los de la mesa. Ella tiene un total de 150 tablas y 330 clavos.
Representemos por T a el número de mesas y por C al de sillas.
La siguiente inecuación relaciona el número de tablas de madera utilizado y las tablas disponibles:
y la siguiente inecuación relaciona el número de clavos utilizado y los clavos disponibles:
¿Tiene Flor suficientes tablas y clavos para hacer 3 mesas y 9 sillas?
Autoevaluación sobre soluciones de sistemas de inecuaciones lineales con 2 incógnitas.