Plantilla:Radicales (nivel básico)
De Wikipedia
Tabla de contenidos[esconder] |
Radical
- Un radical es cualquier expresión del tipo:
![k \cdot \sqrt[n]{a}~,~k \in \mathbb{R}](/wikipedia/images/math/c/2/6/c26445b313b501056047ed7787606a37.png)
- Si dos radicales tienen el mismo índice diremos que son homogéneos.
- Si dos radicales tienen el mismo índice y el mismo radicando diremos que son semejantes.
Radicales equivalentes
Dos o más radicales son equivalentes si los exponentes de las potencias asociadas son equivalentes.
Reducción de radicales a índice común
La amplificación y simplificación de radicales nos va a permitir reducir radicales a índice común realizando el mínimo común múltiplo de los índice al igual que para reducir fracciones a común denominador se hacía el m.c.m. de los denominadores. No olvidemos que índice y denominador del exponente es lo mismo.
Ordenación de radicales
La reducción de radicales a índice común nos va a permitir ordenar cómodamente varios radicales:
Operaciones con radicales
Propiedades de las operaciones con radicales
Suma y resta de radicales semejantes
Para sumar y restar radicales, éstos deben ser semejantes, es decir, tener el mismo radicando y el mismo índice. En tal caso el radical el radical resultante tiene como coeficiente la suma o resta de los coeficientes de cada uno de los radicales.
Ejemplo: Suma y resta de radicales semejantes
Efectúa las siguientes sumas y restas de radicales:
1.
2.
3.
Actividades
En los siguientes videotutoriales vamos a repasar las operaciones con radicales vistas hasta ahora, antes de pasar a ver otros casos de mayor dificultad.