Logaritmos (4ºESO Académicas)

De Wikipedia

Revisión de fecha 16:33 26 sep 2018; Ver revisión actual
← Revisión anterior | Revisión siguiente →

Tabla de contenidos

Logaritmos

Sea a \in \mathbb{R}^+~,~(a \ne 1). Se define el logaritmo en base a de un número real P\;, y se designa por log_a \ P, al exponente x\; al que hay que elevar la base a\; para obtener P\;, es decir:

log_a \ P=x \iff a^x=P

Por consiguiente, podemos ver al logaritmo como la operación inversa de la potenciación.

ejercicio

Ejercicios resueltos: Logaritmos


Hallar los siguientes logaritmos reconociendo la potencia correspondiente:

log_3 \ 81,\ log_{10} \ 0.01,\ log_5 \ 0.2, \ log_2 \ 0.125

Propiedades de los logaritmos

ejercicio

Propiedades de los logaritmos:


1: Igualdad y orden:

a) P \ne Q \Rightarrow log_a \ P \ne log_a \ Q o equivalentemente,

           log_a \ P = log_a \ Q \Rightarrow P=Q

b) P < Q \Rightarrow log_a \ P < log_a \ Q, \quad si~ a>1
c) P < Q \Rightarrow log_a \ P > log_a \ Q, \quad si~ 0<a<1

2: Logaritmo de la base:

a) log_a \ a=1
b) log_a \ a^n=n
c) log_a \ 1=0

3: Logaritmo de números negativos o nulos:

Si P \le 0, entonces log_a \ P no existe.

4: Logaritmo de un producto:

log_a \ (P \cdot Q)=log_a \ P + log_a \ Q

5: Logaritmo de un cociente:

log_a \ \cfrac{P}{Q}=log_a \ P - log_a \ Q

6: Logaritmo de una potencia:

log_a \ P^n=n \cdot log_a \ P

7: Logaritmo de una raíz:

log_a \ \sqrt[n]{P}=\cfrac{1}{n} \cdot log_a \ P

8: Cambio de base:

log_a \ P=\cfrac{log_b \ P}{log_b \ a}

ejercicio

Ejercicios resueltos: Propiedades de los logaritmos


Sabiendo que log_2 \ A=3.5 \ y \ log_2 \ B=-1.4, calcula:

a) log_2 \ \cfrac{A \cdot B}{4}
b) log_2 \ \cfrac{2 \sqrt{A}} {B^3}

Logaritmos decimales

Los logaritmos decimales son aquellos de base 10. En vez de representarlos por log_{10}\;, los representaremos, simplemente, por log\;. Esto es:

log_{10} \ P=log \ P

Calculadora

Calculadora

Calculadora: Logaritmo decimal


Para calcular logaritmos decimales usaremos la tecla Logaritmo decimal.

Antes de la existencia de las calculadoras, los logaritmos decimales se obtenían a partir de las llamadas tablas logarítmicas.

Haciendo uso de la propiedad del cambio de base, vista en un apartado anterior, podemos calcular logaritmos en cualquier base utilizando logaritmos decimales. He aquí un ejemplo:

ejercicio

Ejemplo: Cambio de base


Usa la calculadora para hallar log_2 \ 11.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Logaritmos


(Pág. 26)

1 al 5

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda