Plantilla:Ángulos coterminales
De Wikipedia
Revisión de fecha 09:01 18 feb 2019; Ver revisión actual
← Revisión anterior | Revisión siguiente →
← Revisión anterior | Revisión siguiente →
Dos ángulos, y , son coterminales (se nota ) si tienen el mismo vértice, el mismo lado inicial y el mismo lado final. Propiedades Los ángulos coterminales se diferencian en un número entero de vueltas a la circunferencia goniométrica. Es decir, .
|
Propiedades
- Los ángulos coterminales tienen las mismas razones trigonométricas.
- Dado un ángulo mayor que 360º, existe un ángulo comprendido entre 0º y 360º coterminal con él, que es el resto de la división entre el ángulo y 360º.
- Dado un ángulo negativo, existe un ángulo positivo coterminal con él.
Demostración:
- Los ángulos coterminales tienen las mismas razones trigonométricas, por tener la misma posición en la circunferencia goniométrica.
- Dado un ángulo mayor que 360º, existe un ángulo comprendido entre 0º y 360º coterminal con él, que es el resto de la división entre el ángulo y 360º, ya que, al hacer la división y quedarnos con el resto, le estamos quitando un número exacto de vueltas y por tanto obteniendo uno coterminal con él.
- Dado un ángulo negativo, existe un ángulo positivo coterminal con él pués basta con sumarle 360º un número suficiente de veces.
- El ángulo -60º tiene por coterminal al ángulo 300º (-60º+360º). Por tanto, las razones trigonométricas de -60º y 300º son las mismas.
Si un ángulo tiene medida superior a 360º, al ángulo con medida inferior a 360º coterminal con , decimos que es la reducción al primer giro de .
- 3000º es coterminal con 120º porque la división 3000:360 da 120 de resto. Entonces 120º es la recucción al primer giro de 3000º.
Ángulos coterminales (7´13") Sinopsis:
Definición de ángulos coterminales. Ejemplos.
Reducción de un ángulo al primer giro (7´03") Sinopsis:
- Si un ángulo orientado "A" tiene medida superior a 360º, del único ángulo "B" con medida inferior a 360º coterminal con "A", decimos que es la reducción al primer giro de "A".
- Ejemplos.
Actividad: Ampliación del concepto de ángulo
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|