Plantilla:Razones trigonométricas de un ángulo cualquiera

De Wikipedia

Obsérvese como, en el apartado anterior, las coordenadas del punto B son (cos \, \alpha , sen \, \alpha ). Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

  • Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:

B=(cos \, \alpha , sen \, \alpha )

  • Definiremos la tangente del ángulo, como:

tg \, \alpha = \cfrac{sen(\alpha)}{cos(\alpha)}    ,    \alpha \ne 90^\circ \, , 270^\circ

Signo de las razones trigonométricas

El signo de una razón trigonométrica viene determinado por el cuadrante en el que se encuentre el ángulo.

ejercicio

Signo de las razones trigonométricas


  • Seno: El seno de un ángulo es positivo si el ángulo está en el primer o segundo cuadrante, y es negativo si está en el tercer o cuarto cuadrante.
  • Coseno: El coseno de un ángulo es positivo si el ángulo está en el primer o cuarto cuadrante, y es negativo si está en el segundo o tercer cuadrante.



Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda