Algunos límites importantes (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:27 12 ene 2009
Coordinador (Discusión | contribuciones)
(Suma de los términos de una progresión geométrica)
← Ir a diferencia anterior
Revisión de 18:29 12 ene 2009
Coordinador (Discusión | contribuciones)
(Suma de los términos de una progresión geométrica)
Ir a siguiente diferencia →
Línea 22: Línea 22:
* Si <math> 0<\; \mid r \mid \; <1 </math>, entonces <math>lim \ r^n = 0 \;</math> y también <math>lim \ a_1 r^n = 0</math>. * Si <math> 0<\; \mid r \mid \; <1 </math>, entonces <math>lim \ r^n = 0 \;</math> y también <math>lim \ a_1 r^n = 0</math>.
-Por ejemplo, si <math>a_1=3</math> y <math>r=0.5</math>, al multiplicar sucesivas veces 3 por 0.5 (lo que equivale a dividir por 2), el resultado se aproxima cada vez más a cero. Entonces+(Por ejemplo, si <math>a_1=3</math> y <math>r=0.5</math>, al multiplicar sucesivas veces 3 por 0.5, lo que equivale a dividir por 2, el resultado se aproxima cada vez más a cero.
 + 
 +Entonces
<center><math>lim \ S_n=lim \ \frac{a_1 r^n-a_1}{r-1}=\frac{0-a_1}{r-1}=\frac{-a_1}{r-1}=\frac{a_1}{1-r}</math></center> <center><math>lim \ S_n=lim \ \frac{a_1 r^n-a_1}{r-1}=\frac{0-a_1}{r-1}=\frac{-a_1}{r-1}=\frac{a_1}{1-r}</math></center>

Revisión de 18:29 12 ene 2009

Suma de los términos de una progresión geométrica

ejercicio

Límite de la suma de n primeros términos de una progresión geométrica


Sea a_n\; una progresión geométrica de razón r\; y sea S_n=\frac{a_1 r^n-a_1}{r-1} la suma de sus n primeros términos

  • Si 0<\; \mid r \mid \; <1, entonces el límite de S_n\; existe y su valor es:
lim \ S_n = S_{\infty}=\frac{a_1}{1-r}
  • Si r>1\;, entonces el límite de S_n\; es +\infty \;:
lim \ S_n = S_{\infty}=+\infty \;
  • Si r<-1\;, entonces el límite de S_n\; no existe.

El número e

El número áureo, \phi \;

ejercicio

La sucesión de Fibonacci y el número áureo


Si a partir de la sucesión de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...), construimos, por recurrencia, la sucesión b_n=\cfrac{a_{n+1}}{a_n}, se cumple que:

lim \ b_n=lim \ \cfrac{a_{n+1}}{a_n}= \frac{1 + \sqrt{5}}{2} = \phi = 1.618 \cdots (número áureo)

ejercicio

Video: La divina proporción. El número Phi. (6´)


ejercicio

Web: [Phi, el número de oro Phi, el número de oro]


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda