Límite de una sucesión (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:42 13 oct 2016
Coordinador (Discusión | contribuciones)
(Sucesiones que no tienen límite)
← Ir a diferencia anterior
Revisión de 14:57 18 oct 2016
Coordinador (Discusión | contribuciones)
(Sucesiones que no tienen límite)
Ir a siguiente diferencia →
Línea 175: Línea 175:
<center><math>-1,\ 2,\ -3,\ 4,\ -5,\ 6,\ -7,\ 8,\ \cdots</math></center> <center><math>-1,\ 2,\ -3,\ 4,\ -5,\ 6,\ -7,\ 8,\ \cdots</math></center>
<br> <br>
-Se trata de una '''sucesión oscilante'''. No es divergente ni convergente, es decir, no tiene límite.+Se trata de una que no es ni convergente, ni divergente. ('''sucesión oscilante''')
Esto es debido a que sus términos se aproximan a dos valores distintos: los términos impares tienden a <math>+\infty \;</math> y los pares a <math>-\infty \;</math>, como puede verse en la representación gráfica de la sucesión. Esto es debido a que sus términos se aproximan a dos valores distintos: los términos impares tienden a <math>+\infty \;</math> y los pares a <math>-\infty \;</math>, como puede verse en la representación gráfica de la sucesión.

Revisión de 14:57 18 oct 2016

Tabla de contenidos

Para acercarnos a la idea de límite, vamos a empezar viendo algunas representaciones gráficas de sucesiones.

(pág. 61)

Representación gráfica de una sucesión

Para representar gráficamente una sucesión a_n\;, construiremos una tabla donde anotaremos el valor de a_n\; para distintos valores de n.

Las parejas (n,a_n),\ n=1,\ 2,\ 3,\ \cdots obtenidas en la tabla, son las coordenadas de los puntos de la representación gráfica de la sucesión, que dibujaremos en unos ejes de coordenadas cartesianos.

ejercicio

Ejercicios resueltos: Representación gráfica y límite de una sucesión


Representa graficamente las siguientes sucesiones:

a) a_{n} = \cfrac{5n}{n+3}

b) a_{n} = \cfrac{n^2}{5}-4n\;

Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Representación gráfica y límite de una sucesión


(Pág. 61)

1, 2, 3

(pág. 62)

Concepto de límite de una sucesión

  • Cuando los términos de una sucesión a_n\; podemos conseguir que se aproximen a un número l \in  \mathbb{R}, tanto como queramos (a menos de una distancia \varepsilon \; tan pequeña como deseemos) al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a l\; o que su límite es l\;. Diremos que la sucesión es convergente. Lo escribiremos simbólicamente:

lim \ a_n = l \ \Leftrightarrow \ \forall \, \varepsilon > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ |a_n -l|<\varepsilon

  • Cuando los términos de una sucesión a_n\; superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a +\infty \; o que su límite es +\infty \;. Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:

lim \ a_n = +\infty \ \Leftrightarrow \ \forall \, k > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n> k

  • Cuando los términos de una sucesión a_n\; toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a -\infty \; o que su límite es -\infty \;. Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:

lim \ a_n = -\infty \ \Leftrightarrow \ \forall \, k < 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n< k

ejercicio

Teorema


Toda sucesión de números reales monótona y acotada es convergente. Mas concretamente:

  • Una sucesión de números reales creciente y acotada superiormente es convergente.
  • Una sucesión de números reales decreciente y acotada inferiormente es convergente.

(pág. 63)

Sucesiones que no tienen límite

Hay sucesiones que no cumplen ninguna de las tres condiciones expuestas en el apartado anterior. Dichas sucesiones diremos que no tienen límite.

ejercicio

Ejemplo: Sucesión oscilante


La siguiente sucesión no tiene límite

a_n=(-1)^{n+1} \cdot n

(Pág. 63)

ejercicio

Ejercicios resueltos: Límite de una sucesión


1. Estudiar el comportamiento de las siguientes sucesiones para valores de n avanzados e indicar su límite:

a) a_n=3+\frac{10}{n}
b) b_n=\frac{n^2-n}{2}


2. Comprobar si las siguientes sucesiones tienen límite:

a) a_n=(-3)^n \;
b) c_n=\frac{(-1)^n}{n}

ejercicio

Ejercicio: Límite de una sucesión


1. Representa gráficamente las siguientes sucesiones e indica si tienen o no límite, calculándolo en su caso:

a) a_n=n^2\;

b) b_n=\cfrac{7n}{n+1}

c) c_n=\cfrac{n^2-6n-1}{5n+1}

d) d_n=(-1)^n \cdot (2n+1)

e) e_n=\cfrac{n^2-2}{2n^2+1}

f) f_n=\cfrac{n^3-15n^2+25}{2n^2-1}

g) g_n=\cfrac{90n+90}{n^2}

h) h_n=\sqrt{4n+5}

i) i_n= \begin{cases} 2, & \mbox{si }n\mbox{ es par} \\ 4, & \mbox{si }n\mbox{ es impar} \end{cases}

j) j_n=\cfrac{(-1)^n \cdot  (n+5)}{n^2}

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Límite de una sucesión


(Pág. 63)

4, 5

Videotutoriales (Ampliación)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda