Número áureo

De Wikipedia

(Diferencia entre revisiones)
Revisión de 14:45 8 sep 2016
Coordinador (Discusión | contribuciones)
(El número áureo en el arte y en la cultura)
← Ir a diferencia anterior
Revisión de 14:45 8 sep 2016
Coordinador (Discusión | contribuciones)
(El número áureo en el arte y en la cultura)
Ir a siguiente diferencia →
Línea 128: Línea 128:
*A lo largo de la historia ha fascinado a muchos científicos, artistas, poetas, ... Por ejemplo, encontramos la siguiente cita de Kepler (1571-1630): ''Creo que de esta proporción geométrica se sirvió el Creador como la idea por medio de la que introdujo la generación continua de objetos semejantes a partir de objetos semejantes''. O este soneto que escribió Rafael Alberti cerrando el premio a la obra de Luca Pacioli en la edición de 1949 de la Ed. Losado, S. A., en Buenos Aires: *A lo largo de la historia ha fascinado a muchos científicos, artistas, poetas, ... Por ejemplo, encontramos la siguiente cita de Kepler (1571-1630): ''Creo que de esta proporción geométrica se sirvió el Creador como la idea por medio de la que introdujo la generación continua de objetos semejantes a partir de objetos semejantes''. O este soneto que escribió Rafael Alberti cerrando el premio a la obra de Luca Pacioli en la edición de 1949 de la Ed. Losado, S. A., en Buenos Aires:
- +<br>
<center>''A ti, maravillosa disciplina,'' <center>''A ti, maravillosa disciplina,''
Línea 156: Línea 156:
''A ti, divina proporción de oro.''</center> ''A ti, divina proporción de oro.''</center>
- +<br>
*Curiosamente, también aparece en la naturaleza en el crecimiento de algunas plantas, en la distribución de las hojas de algunos tallos, en el crecimiento de las conchas de algunos moluscos. *Curiosamente, también aparece en la naturaleza en el crecimiento de algunas plantas, en la distribución de las hojas de algunos tallos, en el crecimiento de las conchas de algunos moluscos.

Revisión de 14:45 8 sep 2016

Tabla de contenidos

El número áureo

El número áureo, es un número irracional cuyo valor es:

\phi = \frac{1 + \sqrt{5}}{2} \approx 1,61803398874988...

Fue el primer número del que se tuvo conciencia que era irracional. Es representado por la letra griega phi φ (en minúscula) o Φ (en mayúscula) en honor al escultor griego Fidias.

También se le conoce como número de oro, razón áurea o divina proporción (por la obra de Luca Pacioli, De Divina Proportione, escrita entre 1496 y 1498).

ejercicio

Proposición 1


Si dividimos un segmento en dos partes a y b, de manera que la longitud total, a+b, es al segmento más largo a, como a es al segmento más corto b, entonces la razón de dicha proporción es el número áureo.
\cfrac{a+b}{a} = \cfrac{a}{b} = \phi
Fig. 1: El número áureo surge de la división en dos de un segmento guardando las siguientes proporciones: La longitud total a+b es al segmento más largo a, como a es al segmento más corto b.
Aumentar
Fig. 1: El número áureo surge de la división en dos de un segmento guardando las siguientes proporciones: La longitud total a+b es al segmento más largo a, como a es al segmento más corto b.

El rectángulo áureo

El rectángulo áureo (o rectángulo dorado) es un rectángulo que posee una proporcionalidad entre sus lados igual al número áureo.

Los griegos consideraban que un rectángulo de tales características era especialmente armonioso. Esta proporción de medidas se ha utilizado con mucha frecuencia en el arte.

ejercicio

Proposición 2


Si en un rectángulo áureo substraemos la imagen de un cuadrado igual al de su lado menor, el rectángulo resultante es también un rectángulo áureo.
Fig. 2: Si en un rectángulo áureo substraemos la imagen de un cuadrado igual al de su lado menor, el rectángulo resultante es también un rectángulo áureo.
Aumentar
Fig. 2: Si en un rectángulo áureo substraemos la imagen de un cuadrado igual al de su lado menor, el rectángulo resultante es también un rectángulo áureo.

Construcción del rectángulo áureo

ejercicio

Construcción del rectángulo áureo con regla y compás


En la matemática clásica, Euclides construye el rectángulo áureo con regla y compás, siguiendo los siguientes pasos:
  1. Se construye un cuadrado de lado unidad (de rojo, en la Fig. 3).
  2. Se traza una segmento desde la mitad del lado del cuadrado hasta una de sus esquinas.
  3. Empleando ese segmento como radio, se coloca la punta del compás en la mitad del cuadrado y se abate hasta cortar en la prolongación de la base del cuadrado.
  4. Ese punto obtenido determina la base del rectángulo áureo con altura igual al lado del cuadrado.

Fig. 3: Construcción del rectángulo áureo con regla y compás .
Aumentar
Fig. 3: Construcción del rectángulo áureo con regla y compás .

El número áureo en el péntágono estrellado

Los griegos pitagóricos (seguidores de las teorías de Pitágoras) pensaban que el mundo se regía por su orden numérico y geométrico. Para ellos, los únicos números existentes eran los naturales y las relaciones entre ellos (fracciones). Su emblema era la estrella de cinco puntas o pentágono estrellado. Esta estrella representaba la vida y, puesta con una de sus vértices hacia abajo, representa lo contrario (lo maléfico). Comprobaron que en un pentágono regular, la relación entre su diagonal y su lado es el número áureo. Cuando llegaron a la conclusión de que esta relación no se podía expresar como cociente de dos números enteros, se quedaron espantados, y les pareció tan contrario a toda lógica que lo llamaron irracional. Es el primer número irracional del que se tuvo conciencia que lo era.

ejercicio

El número áureo en el péntágono estrellado


La razón entre la diagonal del del péntagono regular y su lado es igual al número áureo. (Ver Fig.4 )


\cfrac{d}{l}= \phi
Fig. 4: En el petágono estrellado se cumple que d / l = Φ.
Aumentar
Fig. 4: En el petágono estrellado se cumple que d / l = Φ.

La sucesión de Fibonacci y el número áureo

La sucesión de Fibonacci se debe a Leonardo de Pisa (Fibonacci), matemático italiano del siglo XIII. Es la siguiente:

1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13,\ 21,\ 34,\ \cdots

Es una sucesión recurrente dada por la siguiente relación de recurrencia:

F_1=1,\ F_2=1,\ F_n=F_{n-1}+F_{n-2}

ejercicio

Término general de la sucesión de Fibonacci


El término general de la sucesión de Fibonacci es:

F_n=\frac{\phi^n-\left(-\phi\right)^{-n}}{\sqrt5}

siendo \phi\; el número áureo.

\phi=\frac{1+\sqrt5}2

ejercicio

La sucesión de Fibonacci y el número áureo


Si a partir de la sucesión de Fibonacci

F_n\; = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...,

construimos, por recurrencia, la sucesión

b_n=\cfrac{F_{n+1}}{F_n}

Entonces, esta sucesión tiende al número áureo:

lim \ b_n= \frac{1 + \sqrt{5}}{2} = \phi

El número áureo en la naturaleza

ejercicio

Ejemplo: La sucesión de Fibonacci y el número áureo


El siguiente problema fue propuesto por Fibonacci, matemático italiano del siglo XIII:

"Cuántas parejas de conejos se producirán en un año, comenzando con una pareja única, si cada mes cualquier pareja engendra otra pareja, que se reproduce a su vez desde el segundo més?"

a) Escribe la sucesión cuyos términos son lás parejas de conejos que hay cada més. Esta recibe el nombre de sucesión de Fibonacci.

b) Ahora vas a construir la sucesión que se obtiene al dividir cada término entre el anterior. Esa sucesión verás que se aproxima al número áureo (\phi\;):

\phi = \frac{1 + \sqrt{5}}{2} = 1.618033988...

 

El número áureo en el arte y en la cultura

    
  • Sus comienzos se sitúan en Egipto. Aparece, por ejemplo, en construcciones como la pirámide de Keops, en la que el cociente entre la altura de uno cualquiera de sus triángulos laterales con el la mitad del lado de la base es igual a Φ. (Fig. 5)
  • El número de oro influyó en el arte del mundo griego, buscando la armonía en los templos y en las esculturas. El famoso escultor Fidias (de ahí le viene el nombre Φ (phi) al número de oro) en su diseño del Partenón utilizó repetidamente la proporción áurea. El alzado del Partenón se enmarca en un rectángulo áureo, AB/CD= Φ. Además, hay muchas más proporciones áureas, como por ejemplo: AC/AD= Φ. (Fig. 6)
  • Los romanos no lo utilizaron y tampoco apareció en la Edad Media.
  • Más tarde reapareció en el Renacimiento.Lo encontramos, por ejemplo, en la famosa pintura de Leonardo de Vinci (1452-1519). El cociente entre la altura del hombre (lado del cuadrado) y la distancia desde el ombligo hasta los pies (radio de la circunferencia) es el número de oro. En su obra «La divina proporción», editada en 1509, Luca Pacioli propone un hombre perfecto en el que encontramos la razón áurea en las relaciones entre distintas partes del cuerpo. (Fig. 7)
  • A lo largo de la historia ha fascinado a muchos científicos, artistas, poetas, ... Por ejemplo, encontramos la siguiente cita de Kepler (1571-1630): Creo que de esta proporción geométrica se sirvió el Creador como la idea por medio de la que introdujo la generación continua de objetos semejantes a partir de objetos semejantes. O este soneto que escribió Rafael Alberti cerrando el premio a la obra de Luca Pacioli en la edición de 1949 de la Ed. Losado, S. A., en Buenos Aires:


A ti, maravillosa disciplina,

media, extrema razón de la hermosura,

que claramente acata la clausura

viva en la malla de tu ley divina.

A ti, cárcel feliz de la retina,

áurea sección, celeste cuadratura,

misteriosa fontana de mesura

que el universo armónico origina.

A ti, mar de los sueños angulares,

flor de las cinco formas regulares,

dodecaedro azul, arco sonoro.

Lucas por alas un compás ardiente.

Tu canto es una esfera transparente.

A ti, divina proporción de oro.


  • Curiosamente, también aparece en la naturaleza en el crecimiento de algunas plantas, en la distribución de las hojas de algunos tallos, en el crecimiento de las conchas de algunos moluscos.
  • Los más apasionados del número de oro incluso hablan de su posible relación con la vida. Aseguran que, si se colocan todos los planetas en fila y se calcula cómo uno divide las distancias entre dos planetas vecinos, se observa que solo la Tierra se sitúa en el punto que se expresa por el número de sección áurea.
Fig. 5
Aumentar
Fig. 5
Fig. 6
Aumentar
Fig. 6
Fig. 7
Aumentar
Fig. 7

Videos y páginas web

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda