Plantilla:Utilidad de la derivada (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 08:52 13 abr 2009
Coordinador (Discusión | contribuciones)
(Problemas de optimización)
← Ir a diferencia anterior
Revisión de 09:02 13 abr 2009
Coordinador (Discusión | contribuciones)
(Problemas de optimización)
Ir a siguiente diferencia →
Línea 115: Línea 115:
{{AI2|titulo=Actividades interactivas: ''Problemas de optimización''|cuerpo= {{AI2|titulo=Actividades interactivas: ''Problemas de optimización''|cuerpo=
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 1:''' [[Imagen:optimizacion1.gif|left]]Hallar las dimensiones del rectángulo de área máxima que puede inscribirse en un triángulo isósceles cuya base (lado desigual) mide 8 cm y la altura correspondiente 3 cm (suponiendo que un lado del rectángulo está sobre la base del triángulo).+|enunciado=[[Imagen:optimizacion1.gif|left]]'''Problema 1:''' Hallar las dimensiones del rectángulo de área máxima que puede inscribirse en un triángulo isósceles cuya base (lado desigual) mide 8 cm y la altura correspondiente 3 cm (suponiendo que un lado del rectángulo está sobre la base del triángulo).
{{p}} {{p}}
Línea 139: Línea 139:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 2:''' [[Imagen:optimizacion2.gif|left]]Queremos construir una caja (sin tapa), a partir de una cartulina cuadrada de 6 dm de lado, a la que se recortarán las esquinas. Hallar las dimensiones de las citadas esquinas para que el volumen de la caja sea máximo.+|enunciado=[[Imagen:optimizacion2.gif|left]]'''Problema 2:''' Queremos construir una caja (sin tapa), a partir de una cartulina cuadrada de 6 dm de lado, a la que se recortarán las esquinas. Hallar las dimensiones de las citadas esquinas para que el volumen de la caja sea máximo.
{{p}} {{p}}
Línea 191: Línea 191:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 3a:''' [[Imagen:optimizacion3.gif|left]]Queremos construir una lata de un tercio de litro de capacidad.+|enunciado=[[Imagen:optimizacion3.gif|left]]'''Problema 3a:''' Queremos construir una lata de un tercio de litro de capacidad.
¿Cuáles serán las dimensiones de la lata más barata (en cuanto a superficie de hojalata)?.{{p}} ¿Cuáles serán las dimensiones de la lata más barata (en cuanto a superficie de hojalata)?.{{p}}
Línea 231: Línea 231:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 4a:''' [[Imagen:optimizacion4.gif|left]]De todas las rectas que pasan por el punto (1,2), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.+|enunciado=[[Imagen:optimizacion4.gif|left]]'''Problema 4a:''' De todas las rectas que pasan por el punto (1,2), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.
'''Problema 4b:''' De todas las rectas que pasan por el punto (a,b), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima. '''Problema 4b:''' De todas las rectas que pasan por el punto (a,b), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.
{{p}} {{p}}
Línea 278: Línea 278:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 5:''' [[Imagen:optimizacion5.gif|left]]Un triángulo isósceles tiene el lado desigual de 12 cm y la altura relativa a ese lado de 5 cm. Encontrar un punto sobre la altura tal que la suma de distancias a los tres vértices sea mínima..+|enunciado=[[Imagen:optimizacion5.gif|left]]'''Problema 5:''' Un triángulo isósceles tiene el lado desigual de 12 cm y la altura relativa a ese lado de 5 cm. Encontrar un punto sobre la altura tal que la suma de distancias a los tres vértices sea mínima..
{{p}} {{p}}
Línea 302: Línea 302:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 6:''' [[Imagen:optimizacion6.gif|left]]Dada la función definida en el intervalo [1,e] por <math>f(x)=\cfrac{1}{x} + ln \, x</math> , determina cuáles de las rectas tangentes a su gráfica tiene la máxima pendiente.+|enunciado=[[Imagen:optimizacion6.gif|left]]'''Problema 6:''' Dada la función definida en el intervalo [1,e] por <math>f(x)=\cfrac{1}{x} + ln \, x</math> , determina cuáles de las rectas tangentes a su gráfica tiene la máxima pendiente.
{{p}} {{p}}
Línea 325: Línea 325:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 7a:''' [[Imagen:optimizacion7.gif|left]]En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. ¿Cuál debe ser la longitud de esa cuerda para que el área del trapecio ABDC sea máxima?+|enunciado=[[Imagen:optimizacion7.gif|left]]'''Problema 7a:''' En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. ¿Cuál debe ser la longitud de esa cuerda para que el área del trapecio ABDC sea máxima?
{{p}} {{p}}
-'''Problema 7b:''' [[Imagen:optimizacion7b.gif|left]]En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. Llamamos E al punto medio del arco CD y dibujamos el pentágonoACEDB. Calcula la longitud de la cuerda CD para que el área del pentágono sea máxima.+[[Imagen:optimizacion7b.gif|left]]'''Problema 7b:''' En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. Llamamos E al punto medio del arco CD y dibujamos el pentágonoACEDB. Calcula la longitud de la cuerda CD para que el área del pentágono sea máxima.
{{p}} {{p}}
|actividad= |actividad=
Línea 370: Línea 370:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 8a:''' [[Imagen:optimizacion8.jpg|left]]Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a 3 km/h y corre por la arena a 10 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.+|enunciado=[[Imagen:optimizacion8.jpg|left]]'''Problema 8a:''' Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a 3 km/h y corre por la arena a 10 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.
{{p}} {{p}}
'''Problema 8b:''' Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a v1 km/h y corre por la arena a v2 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible. '''Problema 8b:''' Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a v1 km/h y corre por la arena a v2 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.
Línea 395: Línea 395:
}} }}
{{ai_cuerpo {{ai_cuerpo
-|enunciado='''Problema 9a:''' [[Imagen:optimizacion9.gif|left]] Divide el número 8 en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.{{p}}+|enunciado=[[Imagen:optimizacion9.gif|left]]'''Problema 9a:''' Divide el número 8 en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.{{p}}
{{p}} {{p}}
'''Problema 9b:''' Divide el número n en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.{{p}}(Este es uno de los problemas que [[Ferrari]] puso a [[Tartaglia]] en su histórico duelo de problemas) '''Problema 9b:''' Divide el número n en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.{{p}}(Este es uno de los problemas que [[Ferrari]] puso a [[Tartaglia]] en su histórico duelo de problemas)

Revisión de 09:02 13 abr 2009

Tabla de contenidos

Estudio del crecimiento

Estudio de los puntos extremos

Extremos relativos

ejercicio

Ejemplos: Determinación de los extremos relativos


Cálculo de máximos y mínimos relativos


Extremos absolutos

ejercicio

Ejemplos: Determinación de máximos y mínimos absolutos


Cálculo de máximos y mínimos absolutos


Problemas de optimización

ejercicio

Ejemplos: Problemas de optimización


ejercicio

Actividades interactivas: Problemas de optimización


Problema 1: Hallar las dimensiones del rectángulo de área máxima que puede inscribirse en un triángulo isósceles cuya base (lado desigual) mide 8 cm y la altura correspondiente 3 cm (suponiendo que un lado del rectángulo está sobre la base del triángulo).

Problema 2: Queremos construir una caja (sin tapa), a partir de una cartulina cuadrada de 6 dm de lado, a la que se recortarán las esquinas. Hallar las dimensiones de las citadas esquinas para que el volumen de la caja sea máximo.

Problema 3a: Queremos construir una lata de un tercio de litro de capacidad. ¿Cuáles serán las dimensiones de la lata más barata (en cuanto a superficie de hojalata)?.

Problema 3a: ¿Y si la hojalata para las tapas cuesta el doble que la destinada a la cara lateral?

Problema 4a: De todas las rectas que pasan por el punto (1,2), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.

Problema 4b: De todas las rectas que pasan por el punto (a,b), encuentra la que determina con los ejes de coordenadas, y en el primer cuadrante, un triángulo de área mínima.

Problema 5: Un triángulo isósceles tiene el lado desigual de 12 cm y la altura relativa a ese lado de 5 cm. Encontrar un punto sobre la altura tal que la suma de distancias a los tres vértices sea mínima..

Problema 6: Dada la función definida en el intervalo [1,e] por f(x)=\cfrac{1}{x} + ln \, x , determina cuáles de las rectas tangentes a su gráfica tiene la máxima pendiente.

Problema 7a: En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. ¿Cuál debe ser la longitud de esa cuerda para que el área del trapecio ABDC sea máxima?


Problema 7b: En una semicircunferencia de diámetro AB=2r se traza una cuerda CD paralela a AB. Llamamos E al punto medio del arco CD y dibujamos el pentágonoACEDB. Calcula la longitud de la cuerda CD para que el área del pentágono sea máxima.

Problema 8a: Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a 3 km/h y corre por la arena a 10 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.

Problema 8b: Un nadador, A, se encuentra a 3 km de la playa en frente de una caseta (C). Desea ir a B, en la misma playa, a 6 km de la caseta. Sabiendo que nada a v1 km/h y corre por la arena a v2 km/h, averigua a qué lugar debe dirigirse a nado para llegar a B en el menor tiempo posible.

Problema 9a: Divide el número 8 en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.

Problema 9b: Divide el número n en dos partes de manera que su producto multiplicado por la diferencia entre las partes sea tan grande como sea posible.

(Este es uno de los problemas que Ferrari puso a Tartaglia en su histórico duelo de problemas)

Para ampliar

ejercicio

Ejemplos: La sustancia de la derivada


Aproximaciones de números


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda