Razones trigonométricas de 0º a 360º (4ºESO Académicas)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 08:51 18 feb 2019
Coordinador (Discusión | contribuciones)
(Razones trigonométricas: de 0º a 360º (4ºESO-B) trasladada a Razones trigonométricas: de 0º a 360º (4ºESO Académicas))
← Ir a diferencia anterior
Revisión de 08:53 18 feb 2019
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 21: Línea 21:
{{p}} {{p}}
 +==Ejercicios propuestos==
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Razones trigonométricas de 0º a 360º''
 +|cuerpo=
 +(Pág. 151)
 +
 +[[Imagen:red_star.png|12px]] 1, 2, 5
 +
 +}}
[[Categoría: Matemáticas]][[Categoría: Geometría]] [[Categoría: Matemáticas]][[Categoría: Geometría]]

Revisión de 08:53 18 feb 2019

Tabla de contenidos

Angulos orientados

Un ángulo orientado es aquel que, en un sistema de coordenadas cartesianas, está generado por el giro de una semirecta que parte del semieje positivo de las X. (Fig. 1)

  • El ángulo es positivo cuando está generado en sentido contrario al movimiento de las agujas del reloj y negativo cuando está generado en sentido horario.
  • La rotación de la semirrecta puede ser mayor que un giro..

Los ejes cartesianos dividen al plano en cuatro regiones denominadas cuadrantes:

  • Un ángulo \alpha\; pertenece al primer cuadrante si 0^\circ< \alpha <90^\circ
  • Un ángulo \alpha\; pertenece al segundo cuadrante si 90^\circ< \alpha <180^\circ
  • Un ángulo \alpha\; pertenece al tercer cuadrante si 180^\circ< \alpha <270^\circ
  • Un ángulo \alpha\; pertenece al cuarto cuadrante si 270^\circ< \alpha <360^\circ

Fig. 1: Angulo orientado
Aumentar
Fig. 1: Angulo orientado

Circunferencia goniométrica

Llamaremos circunferencia goniométrica a la circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con centro en el origen de coordenadas, O.

Sobre la circunferencia goniométrica situaremos nuestro ángulo orientado, \alpha \;. Este genera un triángulo rectángulo ABC, tal y como se muestra en la Fig. 2. En él, el vértice A coincide con el origen O, el cateto OC, contiguo al ángulo \alpha \;, se situa en el eje X positivo, y la hipotenusa AB coincide con el radio.

Teniendo en cuenta que \overline{AB} = \overline{OE}= radio = 1, las razones trigonométricas del águlo \alpha \; se expresan de la siguiente manera:

  • sen \, \alpha = \cfrac{\overline{CB}}{\overline{AB}}=\overline{CB}
  • cos \, \alpha =  \cfrac{\overline{OC}}{\overline{AB}}=\overline{OC}
  • tg \, \alpha = \cfrac{\overline{DE}}{\overline{OE}}=\overline{DE}

Fig. 2: Circunferencia goniométrica: De color rojo, el seno; de color verde, el coseno; de color rosa, la tangente
Aumentar
Fig. 2: Circunferencia goniométrica: De color rojo, el seno; de color verde, el coseno; de color rosa, la tangente

Razones trigonométricas de un ángulo cualquiera

Obsérvese como, en el apartado anterior, las coordenadas del punto B son (cos \, \alpha , sen \, \alpha ). Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

  • Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:

B=(cos \, \alpha , sen \, \alpha )

  • Definiremos la tangente del ángulo, como:

tg \, \alpha = \cfrac{sen(\alpha)}{cos(\alpha)}    ,    \alpha \ne 90^\circ \, , 270^\circ

Signo de las razones trigonométricas

El signo de una razón trigonométrica viene determinado por el cuadrante en el que se encuentre el ángulo.

ejercicio

Signo de las razones trigonométricas


  • Seno: El seno de un ángulo es positivo si el ángulo está en el primer o segundo cuadrante, y es negativo si está en el tercer o cuarto cuadrante.
  • Coseno: El coseno de un ángulo es positivo si el ángulo está en el primer o cuarto cuadrante, y es negativo si está en el segundo o tercer cuadrante.



Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Relaciones fundamentales de la trigonometría (ángulos de cualquier cuadrante)

Las relaciones fundamentales de la trigonometría, ya estudiadas anteriormente, siguen siendo válidas con las definiciones dadas para ángulos de cualquier cuadrante. Puedes verlo en el siguiente video:

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Razones trigonométricas de 0º a 360º


(Pág. 151)

1, 2, 5

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda