Vectores: Coordenadas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:10 5 dic 2019
Coordinador (Discusión | contribuciones)
(Coordenadas de un vector respecto de una base)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Base de vectores en el plano)
Línea 84: Línea 84:
}} }}
{{p}} {{p}}
 +{{Video_enlace_pablo
 +|titulo1=Base de vectores del plano
 +|duracion=9´49"
 +|url1=https://youtu.be/xRZw8wBYVF0?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Concepto de base de vectores del plano. Ejemplos.
 +}}
 +
===Base ortogonal y ortonormal=== ===Base ortogonal y ortonormal===
{{Caja_Amarilla|texto=Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una '''base ortogonal'''. Si además ambos tienen módulo 1, se dice que forman una '''base ortonormal'''. {{Caja_Amarilla|texto=Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una '''base ortogonal'''. Si además ambos tienen módulo 1, se dice que forman una '''base ortonormal'''.

Revisión actual

Tabla de contenidos

(Pág. 174)

Introducción

Veamos unos vídeos introductorios para poder comprender mejor el concepto de base.

Base de vectores en el plano

ejercicio

Proposición


  • Dados dos vectores \vec{x} e \vec{y}, con distintas direcciones (linealmente independientes), cualquier vector del plano, \vec{v}, se puede poner como combinación lineal de ellos:

\vec{v}=a \vec{x}+b \vec{y}

  • Esta combinación lineal es única, es decir, sólo existen dos números a\, y b\, para los que se cumple la igualdad anterior.

Estos resultados permiten dar la siguiente definición:

Se llama base de un conjunto de vectores del plano a dos vectores \vec{x} e \vec{y}, con distintas direcciones (linealmente independientes). La representaremos por B(\vec{x},\vec{y}).

De esta manera, la proposición anterior se pueden expresar de la siguiente manera:

ejercicio

Teorema de la base


Cualquier vector del plano se puede poner como combinación lineal de los vectores de una base, de forma única.

Base ortogonal y ortonormal

Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una base ortogonal. Si además ambos tienen módulo 1, se dice que forman una base ortonormal.

Base canónica de los vectores del plano

La base canónica o base usual de los vectores del plano, es una base ortonormal que representaremos por B(\vec{i}, \vec{j}), cuyos vectores se caracterizan por:

1) Estan fijados a un punto común, el origen del sistema de referencia o punto (0,0).
2) Tienen por direcciones la de los ejes de coordenadas.
3) Tienen el mismo sentido que el de los semiejes positivos.

Coordenadas de un vector respecto de una base

Dada una base del plano B(\vec{x},\vec{y}), por el teorema de la base, sabemos que cualquier vector \vec{v} se puede poner como combinación lineal de los vectores de dicha base, de forma única:

\vec{v}=a \vec{x}+b \vec{y}
  • Al par de números (a,b)\, los llamaremos las coordenadas del vector \vec{v} respecto de la base B(\vec{x},\vec{y}). Lo expresaremos \vec{v}=(a,b), o bien, \vec{v}(a,b).
  • Las coordenadas de los vectores de la base son \vec{x}(1,0) e \vec{y}(0,1), ya que \vec{x}=1 \vec{x}+0 \vec{y} y \vec{y}=0 \vec{x}+1 \vec{y}.

Operaciones con vectores dados por coordenadas

Sean \vec{u}=(x_1,y_1) y \vec{v}=(x_2,y_2) dos vectores del plano:

  • Suma de vectores: \vec{u}+\vec{v}=(x_1+x_2,y_1+y_2)
  • Producto por un número k: k \vec{u}=(k \, x_1,k \, y_1)
  • Combinación lineal: a \vec{u}+b \vec{v}=(a \, x_1+ b \, x_2, a \, y_1+b \, y_2)

(Pág. 175)

ejercicio

Ejercicios resueltos: Operaciones con vectores dados por coordenadas


1. Sean \vec{u}=(2,3) y \vec{v}=(5,-2). Halla y comprueba gráficamente que:

a) 3 \, \vec{u} = (6,9)
b) \vec{u}+\vec{v} = (7,1)

2. Sean \vec{u}=(0,-1), \vec{v}=(-1,0) y \vec{w}=(2,-3).

Calcula "a" y "b" para que \vec{w}=a\, \vec{u} + b\, \vec{v}.


Ejercicios propuestos

ejercicio

Ejercicios propuestos: Coordenadas de un vector


(Pág. 175)

1b,c

1a,b

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda