Vectores: Producto escalar (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:16 8 oct 2016
Coordinador (Discusión | contribuciones)
(Expresión analítica del producto escalar en bases ortonormales)
← Ir a diferencia anterior
Revisión de 10:01 9 oct 2016
Coordinador (Discusión | contribuciones)
(Operaciones con el producto escalar)
Ir a siguiente diferencia →
Línea 70: Línea 70:
}} }}
{{p}} {{p}}
 +===Ejercicios propuestos===
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Producro escalar''
 +|cuerpo=
 +(Pág. 176)
 +
 +[[Imagen:red_star.png|12px]] 1; 2; 3a,c,e; 4
 +
 +[[Imagen:yellow_star.png|12px]] 3b,d,f; 5
 +
 +
 +}}
===Proyección de vectores y producto escalar=== ===Proyección de vectores y producto escalar===

Revisión de 10:01 9 oct 2016

Tabla de contenidos

Producto escalar de vectores

Se llama producto escalar de dos vectores \vec{u} y \vec{v}, al número real que se obtiene multiplicando los módulos de ambos vectores por el coseno del ángulo que forman:

\vec{u} \cdot \vec{v}=|\vec{u}| \, |\vec{v}| \, cos \, (\widehat{\vec{u}, \,  \vec{v}})

Propiedades del producto escalar

Propiedad fundamental del producto escalar

ejercicio

Propiedades (1)


  • Si \vec{u}=\vec{0} ó \vec{v}=\vec{0} entonces \vec{u} \cdot \vec{v}=0.
  • \forall \, \vec{u} \, , \vec{v} \ne \vec{0} se cumple que \vec{u} \bot \vec{v} \iff \vec{u} \cdot \vec{v}=0

Signo del producto escalar

ejercicio

Propiedades (2)


El signo del producto escalar queda determinado por el ángulo que forman los vectores:

  • \vec{u} \cdot \vec{v}>0 si \widehat{\vec{u}, \,  \vec{v}} es agudo.
  • \vec{u} \cdot \vec{v}<0 si \widehat{\vec{u}, \,  \vec{v}} es obtuso.

Operaciones con el producto escalar

ejercicio

Propiedades (3)


  • Conmutativa: \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}.
  • Asociativa mixta: \lambda (\vec{u} \cdot \vec{v})=(\lambda \vec{u}) \cdot \vec{v}= \vec{u} \cdot (\lambda \vec{v})\, , \quad \lambda \in \mathbb{R}.
  • Distributiva: \vec{u} \cdot (\vec{v} + \vec{w})=\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Producro escalar


(Pág. 176)

1; 2; 3a,c,e; 4

3b,d,f; 5

Proyección de vectores y producto escalar

Llamaremos proyección del vector \vec{v} sobre el vector \vec{u}, al número

proy_{\vec{v}}\vec{u}=|v| \, \cos \, \alpha \qquad

siendo \alpha= \widehat{\vec{u}, \,  \vec{v}}.

Observa que la proyección es un número positivo o negativo según lo sea cos \, \alpha.

ejercicio

Proposición (4)


El producto escalar de dos vectores es igual al módulo de uno de ellos por la proyección del otro sobre él.

\vec{u} \cdot \vec{v}=|\vec{v}| \, proy_{\vec{v}}\vec{u}=|\vec{u}| \, proy_{\vec{u}}\vec{v}
Imagen:proyeccion2.png
Imagen:proyeccion.png

ejercicio

Corolarios (5)


  • Proyección de \vec{u} sobre \vec{v}:
proy_{\vec{v}}\vec{u}=\cfrac{\vec{u} \cdot \vec{v}}{|\vec{v}|}
  • Proyecciones coincidentes: Si las proyecciones sobre \vec{v} de \vec{u_1} y de \vec{u_2} coinciden, entonces:
\vec{u_1} \cdot \vec{v}= \vec{u_2} \cdot \vec{v}

El producto escalar con bases ortonormales

Expresión analítica del producto escalar en bases ortonormales

ejercicio

Proposición (6)


Sea B(\vec{x},\vec{y}) una base ortonormal, entonces

\vec{x} \cdot \vec{x}=1 \qquad \vec{y} \cdot \vec{y}=1 \qquad \vec{x} \cdot \vec{y}=0

ejercicio

Proposición (7)


Si las coordenadas de los vectores \vec{u} y \vec{v}, respecto de una base otonormal B(\vec{x},\vec{y}) son \vec{u}(x_1,y_1) y \vec{v}(x_2,y_2), entonces:

\vec{u} \cdot \vec{v}=x_1 \, x_2 + y_1 \, y_2

Módulo de un vector en una base ortonormal

ejercicio

Proposición (8)


El módulo de un vector \vec{v}(v_1,v_2), respecto de una base otonormal, es

|\vec{v}|=\sqrt{v_1^2+v_2^2}

Ángulo de dos vectores en una base ortonormal

ejercicio

Proposición (9)


Dados dos vectores, \vec{u}(u_1,u_2) y \vec{v}(v_1,v_2), respecto de una base otonormal, se cumple que

cos \, (\widehat{\vec{u}, \,  \vec{v}})=\cfrac{u_1 \, v_1 + u_2 \, v_2}{\sqrt{u_1^2+u_2^2} \, \sqrt{v_1^2+v_2^2}}

Vector ortogonal a otro

ejercicio

Proposición (10)


Los vectores de coordenadas \vec{u}(a,b) y \vec{v}(-b,a), respecto de una base ortonormal, son ortogonales.

Producto escalar de vectores (enfoque alternativo)

En estos videotutoriales se va partir de la proposición (7) como definición de producto escalar y se va a deducir como resultado la definición de la que hemos partido al comienzo de este capítulo.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda