Vectores: Producto escalar (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:12 15 mar 2009
Coordinador (Discusión | contribuciones)
(Perpendicularidad y producto escalar)
← Ir a diferencia anterior
Revisión de 21:45 15 mar 2009
Coordinador (Discusión | contribuciones)
(Propiedad fundamental del producto escalar)
Ir a siguiente diferencia →
Línea 16: Línea 16:
===Propiedad fundamental del producto escalar=== ===Propiedad fundamental del producto escalar===
{{Teorema||titulo=Propiedad fundamental|enunciado= {{Teorema||titulo=Propiedad fundamental|enunciado=
-*'''Nulidad:''' Si cualquiera de los dos vectores, {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u}</math>}} o {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{v}</math>}}, es {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{0}</math>}}, entonces {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u} \cdot \overrightarrow{v}=0</math>}}.+*Si cualquiera de los dos vectores, {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u}</math>}} o {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{v}</math>}}, es {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{0}</math>}}, entonces {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u} \cdot \overrightarrow{v}=0</math>}}.
-*'''Perpendicularidad''' Dados dos vectores no nulos, {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u}</math>}} y {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{v}</math>}}, se cumple que+*Dados dos vectores no nulos, {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{u}</math>}} y {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{v}</math>}}, se cumple que
<center><math>\overrightarrow{u} \bot \overrightarrow{v} \iff \overrightarrow{u} \cdot \overrightarrow{v}=0</math></center> <center><math>\overrightarrow{u} \bot \overrightarrow{v} \iff \overrightarrow{u} \cdot \overrightarrow{v}=0</math></center>
|demo= |demo=
-*'''Nulidad:''' Esta propiedad es inmediata. +*La primera propiedad es inmediata.
-*'''Perpendicularidad''' Si ambos vectores no son nulos, entonces, para que le productro escalar sea cero, debe ser cero el coseno del ángulo que forman esto ocurre sólo si el ángulo es de 90º. +*Para la segunda propiedad, si ambos vectores no son nulos, entonces, para que el producto escalar sea cero, debe ser cero el coseno del ángulo que forman, y esto ocurre sólo si el ángulo es de 90º.
}} }}
{{p}} {{p}}

Revisión de 21:45 15 mar 2009

Tabla de contenidos

Producto escalar de vectores

Se llama producto escalar de dos vectores \overrightarrow{u} y \overrightarrow{v}, al número real que se obtiene multiplicando los módulos de ambos vectores por el coseno del ángulo que forman:

\overrightarrow{u} \cdot \overrightarrow{v}=|\overrightarrow{u}| \, |\overrightarrow{v}| \, cos \, (\widehat{\overrightarrow{u}, \,  \overrightarrow{v}})

Propiedades del producto escalar

Propiedad fundamental del producto escalar

ejercicio

Propiedad fundamental


  • Si cualquiera de los dos vectores, \overrightarrow{u} o \overrightarrow{v}, es \overrightarrow{0}, entonces \overrightarrow{u} \cdot \overrightarrow{v}=0.
  • Dados dos vectores no nulos, \overrightarrow{u} y \overrightarrow{v}, se cumple que
\overrightarrow{u} \bot \overrightarrow{v} \iff \overrightarrow{u} \cdot \overrightarrow{v}=0

Signo del producto escalar

ejercicio

Propiedades: signo del producto escalar


El signo del producto escalar queda determinado por el ángulo que forman los vectores:

  • \overrightarrow{u} \cdot \overrightarrow{v}>0 si \widehat{\overrightarrow{u}, \,  \overrightarrow{v}} es agudo.
  • \overrightarrow{u} \cdot \overrightarrow{v}<0 si \widehat{\overrightarrow{u}, \,  \overrightarrow{v}} es obtuso.

Operaciones con el producto escalar

ejercicio

Propiedades de las operaciones


  • Propiedad conmutativa: \overrightarrow{u} \cdot \overrightarrow{v}=\overrightarrow{v} \cdot \overrightarrow{u}.
  • Propiedad asociativa: \lambda (\overrightarrow{u} \cdot \overrightarrow{v})=(\lambda \overrightarrow{u}) \cdot \overrightarrow{v}= \overrightarrow{u} \cdot (\lambda \overrightarrow{v}).
  • Propiedad distributiva: \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w})=\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}.

Proyección de vectores y producto escalar

Llamaremos proyección del vector \overrightarrow{v} sobre el vector \overrightarrow{u}, al número

proy_{\overrightarrow{v}}\overrightarrow{u}=|v| \, \cos \, \alpha \qquad

siendo \alpha= \widehat{\overrightarrow{u}, \,  \overrightarrow{v}}.

Observa que la proyección es un número positivo o negativo según lo sea cos \, \alpha.

ejercicio

Proposición: Proyección de vectores


El producto escalar de dos vectores es igual al módulo de uno de ellos por la proyección del otro sobre él.

\overrightarrow{u} \cdot \overrightarrow{v}=|\overrightarrow{v}| \, proy_{\overrightarrow{v}}\overrightarrow{u}=|\overrightarrow{u}| \, proy_{\overrightarrow{u}}\overrightarrow{v}
Imagen:proyeccion2.png
Imagen:proyeccion.png

ejercicio

Corolarios


  • Proyección de \overrightarrow{u} sobre \overrightarrow{v}:
proy_{\overrightarrow{v}}\overrightarrow{u}=\cfrac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|}
  • Proyecciones coincidentes: Si las proyecciones sobre \overrightarrow{v} de \overrightarrow{u_1} y de \overrightarrow{u_2} coinciden, entonces:
\overrightarrow{u_1} \cdot \overrightarrow{v}= \overrightarrow{u_2} \cdot \overrightarrow{v}

El producto escalar con bases ortonormales

Expresión analítica del producto escalar en bases ortonormales

ejercicio

Proposición


Sea B(\overrightarrow{i},\overrightarrow{j}) una base ortonormal, entonces

\overrightarrow{i} \cdot \overrightarrow{i}=1 \qquad \overrightarrow{j} \cdot \overrightarrow{j}=1 \qquad \overrightarrow{i} \cdot \overrightarrow{j}=0

ejercicio

Proposición


Si las coordenadas de los vectores \overrightarrow{u} y \overrightarrow{v}, respecto de una base otonormal B(\overrightarrow{i},\overrightarrow{j}) son \overrightarrow{u}(x_1,y_1) y \overrightarrow{v}(x_2,y_2), entonces:

\overrightarrow{u} \cdot \overrightarrow{v}=x_1 \, x_2 + y_1 \, y_2

Módulo de un vector en una base ortonormal

Ángulo de dos vectores en una base ortonormal

Vector ortogonal a otro

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda