Funciones trigonométricas. El radián (4ºESO Académicas)

De Wikipedia

Tabla de contenidos

El radián

El radián (simbolizado rad) se define como el ángulo que abarca un arco de circunferencia cuya longitud es igual a la del radio de la propia circunferencia.

En la figura adjunta el ángulo \phi \, mide un radián porque abarca un arco que mide igual que el radio de la circunferencia.

El radian se usa también en Física. Por ejemplo, la velocidad angular se suele medir en radianes por segundo (rad/s).



Imagen:radian.gif

Equivalencia entre radianes y grados sexagesimales

ejercicio

Equivalencia entre radianes y grados sexagesimales


\pi \, rad = 180^\circ

En consecuencia:

1 \, rad=\cfrac{180^\circ}{\pi} \approx 57^\circ 17' 45 '' \qquad \qquad1^\circ = \cfrac {\pi \, rad} {180} \approx 0.0175 \, rad

Utilizando la equivalencia anterior, y mediante una regla de tres, podemos obtener las siguientes equivalencias:

Grados   30° 45° 60° 90° 180° 270° 360°
Radianes 0 π/6 π/4 π/3 π/2 π 3π/2



Ejercicios propuestos

ejercicio

Ejercicios propuestos: El radián


(Pág. 155)

1, 2

Funciones trigonométricas

Vamos a estudiar las funciones que se obtienen a partir de las razones trigonométricas de un ángulo x al hacer variar éste. Dicho ángulo se suele expresar en radianes.

Función seno

Se define la función seno como

f(x)=sen(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función seno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es impar, pués sen(-x)=-sen(x)\,
  • Cortes con eje X: \left \{ x=0+ \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=\pi / 2+2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=3 \pi /2 +2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en los intervalos \big( 3 \pi / 2+2 \pi (k-1) , \, \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en los intervalos \big( \pi / 2+2 \pi k , \, 3 \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
Función seno (sinusoide).


Los valores en el eje x están expresados en radianes

Función coseno

Se define la función coseno como

f(x)=cos(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función coseno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es par, pués cos(-x)=cos(x)\,
  • Cortes con eje X: \left \{ x=\pi /2 + \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=\pi (2k+1) \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en los intervalos \big( \pi (2k-1) , \, 2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en los intervalos \big( 2 \pi k , \, \pi (2k+1) \big), \ k \in \mathbb{Z}.
Función coseno (cosinusoide).


Los valores en el eje x están expresados en radianes

Función tangente

Se define la función coseno como

f(x)=tg(x) \, , \quad x \in \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}

ejercicio

Propiedades de la función tangente


  • Dominio: \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Recorrido: \mathbb{R}
  • Periodicidad: Es periódica, con período \pi \,.
  • Continuidad: Es continua en su dominio. Tiene discontinuidades en \left \{ x=\pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Simetrías: Es impar, pués tg(-x)=-tg(x)\,
  • Cortes con eje X: \left \{ x=k \pi , \ k \in \mathbb{Z} \right \}
  • Máximos: No tiene
  • Mínimos: No tiene
  • Crecimiento: Creciente en cada intervalo que compone sus dominio.
Función tangente.


Los valores en el eje x están expresados en radianes

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Funciones trigonométricas. El radián


(Pág. 156)

3

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda