Paralelismo y perpendicularidad en el plano (1ºBach)

De Wikipedia

Tabla de contenidos

Introducción

Paralelismo

Dos rectas son paralelas si tienen la misma dirección.

He aquí tres criterios para determinar si dos rectas son paralelas:

ejercicio

Proposición


Dos rectas son paralelas si:

  • Sus vectores de dirección son proporcionales.
  • Sus vectores normales son proporcionales.
  • Sus pendientes coinciden.

Perpendicularidad

Dos rectas son perpendiculares si sus vectores de dirección son ortogonales.

He aquí tres criterios para determinar si dos rectas son perpendiculares:

ejercicio

Proposición


Dos rectas son perpendiculares si:

  • El producto escalar de sus vectores de dirección es cero: \vec{d_1} \cdot \vec{d_2} = 0
  • El producto escalar de sus vectores normales es cero: \vec{n_1} \cdot \vec{n_2} = 0
  • Sus pendientes, m\, y m'\,, cumplen que: m'=-\cfrac{1}{m}.

Traduciendo el resultado anterior a coordenadas:

ejercicio

Proposición


Dos rectas con vectores de dirección (d_1, d_2)\, y (-d_2,d_1)\, son perpendiculares.

Actividades

ejercicio

Ejercicios resueltos: Paralelismo y perpendicularidad entre rectas


Dada la recta r: 3x-7y+10=0, halla:

a) Las ecuaciones paramétricas de la recta perpendicular a r que pase por P(2,-4).
b) La ecuación explícita de la recta paralela a r que pase por el origen.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Paralelismo y perpendicularidad


(Pág. 198)

1, 2

(Pág. 199)

3, 6

4, 5

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda