Plantilla:Esfera
De Wikipedia
En esta escena podrás calcular el volumen y área de un balón de futbol.
La esfera:
- Definición.
- Elementos
- Área y volumen.
- Ejercicio.
Cálculo del área total y el volumen ocupado por una esfera de radio r. Ejemplos.
Cálculo del área total y el volumen ocupado por una esfera de radio r. Ejemplos.
Halla el volumen y el área de una esfera de diámetro 10 cm.
Halla el radio de una esfera que tiene un volumen de 113.04 cm3.
Teorema
El volumen de la esfera es igual a dos tercios del volumen del cilindro circunscrito a ella.
El cálculo del volumen de la esfera fue uno de los descubrimientos que Arquímedes más estimaba de todos los que hizo en su vida. Llegó a demostrar de un modo muy original que el volumen de la esfera es igual a dos tercios del volumen del cilindro circular circunscrito a ella. Tanto le impresionó esto a él mismo que mandó que en su tumba se grabase esta figura en recuerdo de la mejor de sus ideas.
La siguiente no es una demostración rigurosa, sino intuitiva. Vamos a ver cómo llegó hasta ahí. Arquímedes se imaginó una semiesfera y junto a ella un cilindro circular recto y un cono recto, ambos de base igual a un círculo máximo de la semiesfera:
Arquímedes cortó las tres figuras por un plano paralelo a la base del cilindro y cono y se preguntó cómo serían las secciones determinadas por este plano en cilindro, semiesfera y cono. En el cilindro es un círculo de radio R. En la esfera también será un círculo, pero su radio dependerá de la distancia d. Mirando la figura y acordándote del teorema de Pitágoras, fácilmente puedes escribir que si el radio de la sección es r, entonces
En el cono la sección también será un círculo y ahora el radio es aún más fácil de determinar (como el radio de apertura del cono es de 45º, resulta que el radio es d).
Las secciones son como rebanadas de las tres figuras obtenidas cortando paralelamente a la base del cilindro. Resulta que, colocando las tres figuras como las hemos puesto y cortándolas en rebanadas finas
Si para cada altura se tiene esta relación, parece bastante claro que:
Pero como:
resulta:
Corolario
El volumen de la semiesfera más el volumen de cono inscrito en ella es igual al volumen del cilindro circunscrito a ella.
|
Se ha visto en la demostración del teorema anterior
En esta escena podrás comprobar la relación que existe entre los volúmenes de la esfera, el cono y el cilindro.