Posiciones relativas de dos rectas del plano (1ºBach)

De Wikipedia

Tabla de contenidos

(Pág. 200)

Posición relativa de dos rectas en el plano

Dadas las ecuaciones de dos rectas del plano, éstas pueden ser secantes, paralelas o coincidentes.

Veamos como se averigua dependiendo del tipo de ecuaciones que nos den.

Posición relativa de dos rectas dadas en ecuaciones paramétricas

ejercicio

Procedimiento


Dadas las rectas: r: \, \begin{cases} x=a+bt \\ y=c+dt \end{cases}     y     r': \, \begin{cases} x=a'+b's \\ y=c'+d's \end{cases}

para hallar su posición relativa igualaremos las incógnitas y resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas, s\, y t\,:

\begin{cases} a+bt=a'+b's \\ c+dt=c'+d's \end{cases}
  • Si el sistema es compatible determinado (una solución: (t_0,s_0)\,), las dos rectas se cortan en un punto, que se obtiene sustituyendo los parámetros t_0\, y s_0\,, en las ecuaciones paramétricas.
  • Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas.
  • Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes.

ejercicio

Ejemplo: Posición relativa de dos rectas


Determina la posición relativa de las rectas: r: \, \begin{cases} x=5-t \\ y=3t \end{cases}     y     r': \, \begin{cases} x=-1+2t \\ y=6-3t \end{cases}

Posición relativa de dos rectas dadas en ecuaciones implícitas

ejercicio

Procedimiento


Dadas las rectas: r: \, Ax+By+C=0     y     r': \, A'x+B'y+C'=0

para hallar su posición relativa resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas:, x\, e y\,:

\begin{cases} Ax+By+C=0 \\ A'x+B'y+C'=0 \end{cases}
  • Si el sistema es compatible determinado (una solución: (x_0,y_0)\,), las dos rectas se cortan en ese punto. (Esto ocurre cuando \cfrac{A}{A'} \ne \cfrac{B}{B'}).
  • Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas. (Esto ocurre cuando \cfrac{A}{A'}=\cfrac{B}{B'} \ne \cfrac{C}{C'}).
  • Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes. (Esto ocurre cuando \cfrac{A}{A'}=\cfrac{B}{B'} = \cfrac{C}{C'}).

ejercicio

Ejemplo: Posición relativa de dos rectas


Determina la posición relativa de las rectas: r: \, x-2y+4=0     y     r': \, -2x+4y+4=0

Posición relativa de dos rectas dadas en ecuaciones explícitas

ejercicio

Procedimiento


Dadas las rectas: r: \, y=mx+n     y     r': \, y=m'x+n'

para hallar su posición relativa resolveremos el siguiente sistema de dos ecuaciones con dos incógnitas:, x\, e y\,:

\begin{cases} y=mx+n \\ y=m'x+n' \end{cases}
  • Si el sistema es compatible determinado (una solución: (x_0,y_0)\,), las dos rectas se cortan en ese punto. (Esto ocurre cuando las pendientes son distintas: m \ne m').
  • Si el sistema es incompatible (no tiene solución), las dos rectas son paralelas. (Esto ocurre cuando m=m' \, , n \ne n').
  • Si el sistema es compatible indeterminado (infinitas soluciones) las rectas son coincidentes. (Esto ocurre cuando m=m' \, , n = n').

Ejercicios

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Posición relativa de dos rectas en el plano


(Pág. 201)

1

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda