Prismas (2º ESO)

De Wikipedia

Tabla de contenidos

(Pág. 216)

Prismas

La siguiente actividad condensa todo lo que vamos a ver en este tema.

  • Un prisma es un poliedro limitado por dos polígonos iguales y paralelos, llamados bases, y por varios paralelogramos, llamados caras laterales.
  • La altura de un prisma es la distancia entre las bases.
  • Las aristas básicas son los lados de los polígonos que forman las bases.
  • Las aristas laterales son las restantes aristas.

Elementos de un prisma
de http://calculo.cc

Clasificación de los prismas

  • Atendiendo a sus bases: En función del polígono de las bases, los prismas pueden ser de base triangular, cuadrangular, pentagonal, hexagonal, etc.

  • Atendiendo a su inclinación: Si las caras laterales son perpendicualres a las bases (son rectángulos), el prisma es recto, si no , es oblicuo.
  • Atendiendo a su regularidad: Un prisma es regular si su base es un polígono regular. En caso contrario es irregular. En una prisma regular, todas las aristas laterales son iguales y las caras laterales son rectángulos iguales


Atendiendo a su inclinación
de http://calculo.cc

Atendiendo a su base
de http://calculo.cc

Paralelepípedos

  • Los paralelepípedos son prismas en los que todas sus caras son paralelogramos.
  • Las bases han de ser paralelogramos y por tanto los paralelepípedos son prismas cuadrangulares.
  • Entre ellos destacamos cuatro en particular:
    • Ortoedro: sus caras son rectángulos.
    • Cubo: sus caras son cuadrados.
    • Romboedro: Todas sus caras son rombos.
    • Romboiedro: Todas sus caras son romboides.

Ortoedro

  • Un ortoedro es un prisma recto de caras rectangulares.
  • Un caso particular es el cubo, cuyas caras son todas cuadradas.

Ortoedro

Ortoedro

  • Un ortoedro es un prisma recto de caras rectangulares.
  • Un caso particular es el cubo, cuyas caras son todas cuadradas.

Ortoedro

Desarrollo plano de un prisma

Si representamos en un plano todas las caras de un prisma, de forma contigua, obtenemos lo que se denomina desarrollo plano del prisma.

Fíjate en el siguiente prisma hexagonal. Si cortásemos adecuadamente el prisma, siguiendo ciertas aristas, podríamos desplegarlo como se muestra en la siguiente figura.


Desarrollo plano de un prisma recto hexagonal regular
de http://calculo.cc

Superficie del prisma

La superficie o área del prisma es igual a la suma del área de las dos bases y del área lateral.

  • El área de las bases es la suma de las áreas de dos polígonos iguales.
  • El área lateral es la suma de las áreas de los rectángulos que forman las caras laterales.

  • Áreas:

A=A_l+2 \cdot A_b

A_l=P_b \cdot h

  • Elementos:

A_b\;\!: Área de la base.
A_l\;\!: Área lateral.
P_b\;\!: Perímetro de la base.
h\;\!: altura.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Prismas


(Pág. 216-217)

1 al 5

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda