Problemas de repartos proporcionales (2º ESO)

De Wikipedia

Tabla de contenidos

(Pág. 98)

Repartos proporcionales

En los repartos proporcionales tenemos que partir una cantidad en varias partes, de manera que cada parte sea proporcional, directa o inversamente, a unos ciertos números dados.

Repartos directamente proporcionales

ejercicio

Procedimiento


Para repartir una cantidad, C\;, en partes directamente proporcionales a  a, b, c, ...\;, tenemos que:

  1. Calcular la suma S=a+b+c+...\; y la razón p=\cfrac{C}{S}.
  2. Multiplicar a, b, c, ...\; por p\; para obtener las partes buscadas: a \cdot p, \ b \cdot p, \ c \cdot p, ...

ejercicio

Ejemplo: Repartos directamente proporcionales


Tres grifos aportan 2 l/s, 5 l/s y 7 l/s, respectivamente. Se abren los tres simultáneamente para llenar una balsa de 17080 l. Cuando la balsa está llena, ¿qué volumen de agua habrá manado de cada grifo?

Repartos inversamente proporcionales

ejercicio

Procedimiento


Repartir una cantidad, C\;, en partes inversamente proporcionales a  a, b, c, ...\;, equivale a repartir dicha cantidad en partes directamente proporcionales a sus inversos, \cfrac{1}{a}, \ \cfrac{1}{b}, \cfrac{1}{c}, ...

ejercicio

Ejemplo: Repartos inversamente proporcionales


Un jefe decide repartir 700 € de gratificación entre sus tres empleados, Juan, Luis y Guillermo, de manera que cada uno reciba una cantidad que sea inversamente proporcional al número de veces que han llegado tarde. Si Juan ha llegado 1 día tarde, Luis, 2 días, y Guillermo, 4 días, cuánto le corresponderá a cada uno?

Actividades

ejercicio

Ejercicios propuestos: Repartos proporcionales


    (Pág. 47)

     2, 4

     1, 3

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda