Brahmagupta
De Wikipedia
Revisión de 20:29 24 dic 2008 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 09:18 25 dic 2008 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
Aunque Brahmagupta estaba familiarizado con las obras de los astrónomos siguiendo la tradición de Aryabhatiya, no se sabe si está familiarizado con la labor de Bhaskara I, un contemporáneo. Brahmagupta tenía una cantidad de críticas dirigidas hacia la labor de los astrónomos rivales, y en su ''Brahmasphutasiddhanta'' se encuentra uno de los primeros cismas de fe entre matemáticos indios. La división fue principalmente sobre la aplicación de las matemáticas al mundo físico, más que sobre las matemáticas en si mismas. En el caso de Brahmagupta, los desacuerdos se debieron en gran parte de la elección de las teorías y parámetros astronómicos. A lo largo de los primeros diez capítulos astronómicos aparecen críticas a las teorías rivales, y el undécimo capítulo está completamente dedicado a la crítica de estas teorías, aunque las críticas no aparecen en el duodécimo y décimo octavo capítulos. | Aunque Brahmagupta estaba familiarizado con las obras de los astrónomos siguiendo la tradición de Aryabhatiya, no se sabe si está familiarizado con la labor de Bhaskara I, un contemporáneo. Brahmagupta tenía una cantidad de críticas dirigidas hacia la labor de los astrónomos rivales, y en su ''Brahmasphutasiddhanta'' se encuentra uno de los primeros cismas de fe entre matemáticos indios. La división fue principalmente sobre la aplicación de las matemáticas al mundo físico, más que sobre las matemáticas en si mismas. En el caso de Brahmagupta, los desacuerdos se debieron en gran parte de la elección de las teorías y parámetros astronómicos. A lo largo de los primeros diez capítulos astronómicos aparecen críticas a las teorías rivales, y el undécimo capítulo está completamente dedicado a la crítica de estas teorías, aunque las críticas no aparecen en el duodécimo y décimo octavo capítulos. | ||
- | Seguir traducción de http://en.wikipedia.org/wiki/Brahmagupta | + | == Matemáticas == |
+ | La obra más famosa de Brahmagupta es su ''Brahmasphutasiddhanta''. Compuesta en verso elíptico, practica común en las matemáticas indueshematics]], la obra tiene, en consecuencia, un cierto halo poético. Como en ella no se dan demostraciones, no se sabe como Brahmagupta obtenía los resultados matemáticos. | ||
+ | |||
+ | ===Algebra === | ||
+ | Brahmagupta da la solución de la '''ecuación lineal general''' en el capítulo dieciocho de ''Brahmasphutasiddhanta'', que aunque expresada en el libro en palabras, viene a ser equivalente a la siuiente expresión algebraica: | ||
+ | |||
+ | <center><math>x = \frac{e-c}{b-d}</math></center> | ||
+ | |||
+ | Además, dio dos soluciones equivalentes para la '''ecuación general de segundo grado''', que vienen a ser equivalentes, respectivamente, a las siguientes expresiones algebraicas: | ||
+ | |||
+ | <center><math>x = \frac{\sqrt{4ac+b^2}-b}{2a} </math></center> | ||
+ | |||
+ | y | ||
+ | |||
+ | <center><math>x = \frac{\sqrt{ac+\frac{b^2}{4}}-\frac{b}{2}}{a} </math></center> | ||
+ | |||
+ | El contina resolviendo sistemas de ecuaciones indeterminados, enunciando que la variable elegida debe primero aislarse, y que luego la ecuación debe dividirse por el coeficiente de la variable elegida. | ||
+ | |||
+ | Al igual que el álgebra de [[Diofanto]], el álgebra de Brahmagupta es sincopada. La suma la indicaba colocando los números uno al lado del otro, la resta colocando un punto sobre el sustraendo, la división colocando el divisor debajo del dividendo, similar a nuestra notación, pero sin la barra. La multiplicación, las raices y las incógnitas las representaba mediante abrebiaturas de términos apropiados. | ||
+ | Fue el primero en dar una solución general a la '''ecuación lineal de Diofanto''' <math>ax + by = c</math>, donde a, b, y c son enteros. También es muy posible que diese todas las soluciones de dicha ecuación, mientras que Diofanto se sintió satisfecho con dar una sola solución de una ecuación indeterminada. En la medida en que Brahmagupta utilizó algunos ejemplos iguales a los de Diofanto, vemos la posibilidad de que ambos hubiesen usado las mismas fuentes, posiblemente babilónicas. No se sabe hasta que punto el uso de la notación sincopada en el álgebra de Brahmagupta es debido a los griegos o si tanto griegos como hindues derivan su uso de una fuente común usase notación sincopada, no se conoce y es posible que tanto el griego y el indio síncopa pueden derivarse de una fuente común, las matemáticas babilónicas. | ||
+ | |||
+ | ===Aritmética=== | ||
+ | Al comienzo del capítulo doce de su''Brahmasphutasiddhanta'', titulado ''Cálculo'', Brahmagupta detalla operaciones con fracciones. Da por supuesto que el lector conoce las operaciones aritméticas básicas, como tomar la raíz cuadrada, aunque si explica cómo hallar el cubo y la raíz cúbica de un número entero y, posteriormente, da normas que facilitan el cálculo de cuadrados y raíces cuadradas. A continuación, da las normas para abordar cinco tipos de combinaciones de fracciones, | ||
+ | |||
+ | *<math>\cfrac{a}{c} + \cfrac{b}{c}</math> | ||
+ | *<math>\cfrac{a}{c} \cdot \cfrac{b}{d}</math> | ||
+ | *<math>\cfrac{a}{1} + \cfrac{b}{d}</math> | ||
+ | *<math>\cfrac{a}{c} + \cfrac{b}{d} \cdot \cfrac{a}{c} = \cfrac{a(d+b)}{cd}</math> | ||
+ | *<math>\cfrac{a}{c} - \cfrac{b}{d} \cdot \cfrac{a}{c} = \cfrac{a(d-b)}{cd}</math>. | ||
+ | |||
+ | ====Series==== | ||
+ | Brahmagupta then goes on to give the sum of the squares and cubes of the first ''n'' integers. | ||
+ | <blockquote>12.20. The sum of the squares is that [sum] multiplied by twice the [number of] step[s] increased by one [and] divided by three. The sum of the cubes is the square of that [sum] Piles of these with identical balls [can also be computed].<ref name="Plofker Brahmagupta quote Chapter 12">{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 421–427 | title = }}</ref></blockquote> | ||
+ | It is important to note here Brahmagupta found the result in terms of the ''sum'' of the first ''n'' integers, rather than in terms of ''n'' as is the modern practice.<ref name="Plofker 423">{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 423 | title = | quote = Here the sums of the squares and cubes of the first ''n'' integers are defined in terms of the sum of the ''n'' integers itself;}}</ref> | ||
+ | |||
+ | He gives the sum of the squares of the first n natural numbers as n(n+1)(2n+1)/6 and the sum of the cubes of the first n natural numbers as (n(n+1)/2)². | ||
+ | |||
+ | ==== Zero ==== | ||
+ | Brahmagupta made use of an important concept in mathematics, the [[0 (number)|number zero]]. The ''Brahmasphutasiddhanta'' is the earliest known text to treat zero as a number in its own right, rather than as simply a placeholder digit in representing another number as was done by the [[Babylonians]] or as a symbol for a lack of quantity as was done by [[Ptolemy]] and the [[Ancient Rome|Romans]]. In chapter eighteen of his ''Brahmasphutasiddhanta'', Brahmagupta describes operations on negative numbers. He first describes addition and subtraction, | ||
+ | <blockquote>18.30. [The sum] of two positives is positives, of two negatives negative; of a positive and a negative [the sum] is their difference; if they are equal it is zero. The sum of a negative and zero is negative, [that] of a positive and zero positive, [and that] of two zeros zero.<BR> | ||
+ | [...]<BR> | ||
+ | 18.32. A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta">{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 428–434 | title = }}</ref></blockquote> | ||
+ | |||
+ | He goes on to describe multiplication, | ||
+ | <blockquote>18.33. The product of a negative and a positive is negative, of two negatives positive, and of positives positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/></blockquote> | ||
+ | |||
+ | But then he spoils the matter some what when he describes division, | ||
+ | <blockquote>18.34. A positive divided by a positive or a negative divided by a negative is positive; a zero divided by a zero is zero; a positive divided by a negative is negative; a negative divided by a positive is [also] negative.<BR> | ||
+ | 18.35. A negative or a positive divided by zero has that [zero] as its divisor, or zero divided by a negative or a positive [has that negative or positive as its divisor]. The square of a negative or of a positive is positive; [the square] of zero is zero. That of which [the square] is the square is [its] square-root.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/></blockquote> | ||
+ | |||
+ | Here Brahmagupta states that <math>\tfrac{0}{0} = 0</math> and as for the question of <math>\tfrac{a}{0}</math> where <math>a \neq 0</math> he did not commit himself.<ref name="Boyer Brahmagupta p220">{{cite book|last=Boyer|authorlink=Carl Benjamin Boyer|title=|year=1991|chapter=China and India|pages=220|quote=However, here again Brahmagupta spoiled matters somewhat by asserting that <math>0 \div 0 = 0</math>, and on the touchy matter of <math>a \div 0</math>, he did not commit himself:}}</ref> His rules for [[arithmetic]] on [[negative number]]s and zero are quite close to the modern understanding, except that in modern mathematics division by zero is left [[defined and undefined|undefined]]. | ||
+ | |||
+ | === Diophantine analysis === | ||
+ | ==== Pythagorean triples ==== | ||
+ | In chapter twelve of his ''Brahmasphutasiddhanta'', Brahmagupta finds Pythagorean triples, | ||
+ | <blockquote>12.39. The height of a mountain multiplied by a given multiplier is the distance to a city; it is not erased. When it is divided by the multiplier increased by two it is the leap of one of the two who make the same journey.<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | or in other words, for a given length ''m'' and an arbitrary multiplier ''x'', let a = ''mx'' and ''b = m + mx/(x + 2)''. Then ''m'', ''a'', and ''b'' form a Pythagorean triple.<ref name="Plofker Brahmagupta quote Chapter 12"/> | ||
+ | |||
+ | ==== Pell's equation ==== | ||
+ | Brahmagupta went on to give a recurrence relation for generating solutions to certain instances of Diophantine equations of the second degree such as <math>Nx^2 + 1 = y^2</math> (called [[Pell's equation]]) by using the [[Euclidean algorithm]]. The Euclidean algorithm was known to him as the "pulverizer" since it breaks numbers down into ever smaller pieces.<ref>{{cite book | first = John | last = Stillwell | year = 2004 | pages = 44–46 | title = | quote = In the seventh century CE the Indian mathematician Brahmagupta gave a recurrence relation for generating solutions of <math>x^2 - Dy^2 = 1</math>, as we shall see in Chapter 5. The Indians called the Euclidean algorithm the "pulverizer" because it breaks numbers down to smaller and smaller pieces. To obtain a recurrence one has to know that a rectangle proportional to the original eventually recurs, a fact that was rigorously proved only in 1768 by Lagrange.}}</ref> | ||
+ | |||
+ | <blockquote>The nature of squares:<BR>18.64. [Put down] twice the square-root of a given square by a multiplier and increased or diminished by an arbitrary [number]. The product product of the first [pair], multiplied by the multiplier, with the product of the last [pair], is the last computed.<BR>18.65. The sum of the thunderbolt products is the first. The additive is equal to the product of the additives. The two square-roots, divided by the additive or the subtractive, are the additive ''rupas''.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/></blockquote> | ||
+ | |||
+ | The key to his solution was the identity,<ref name="Stillwell p. 72-74"/> | ||
+ | |||
+ | :<math>(x^2_1 - Ny^2_1)(x^2_2 - Ny^2_2) = (x_1 x_2 + Ny_1 y_2)^2 - N(x_1 y_2 + x_2 y_1)^2</math> | ||
+ | |||
+ | which is a generalization of an identity that was discovered by [[Diophantus]], | ||
+ | |||
+ | :<math>(x^2_1 - y^2_1)(x^2_2 - y^2_2) = (x_1 x_2 + y_1 y_2)^2 - (x_1 y_2 + x_2 y_1)^2.</math> | ||
+ | |||
+ | Using his identity and the fact that if <math>(x_1,</math> <math>y_1)</math> and <math>(x_2,</math> <math>y_2)</math> are solutions to the equations <math>x^2 - Ny^2 = k_1</math> and <math>x^2 - Ny^2 = k_2</math>, respectively, then <math>(x_1 x_2 + N y_1 y_2,</math> <math>x_1 y_2 + x_2 y_1)</math> is a solution to <math>x^2 - Ny^2 = k_1 k_2</math>, he was able to find integral solutions to the Pell's equation through a series of equations of the form <math>x^2 - Ny^2 = k_i</math>. Unfortunately, Brahmagupta was not able to apply his solution uniformly for all possible values of ''N'', rather he was only able to show that if <math>x^2 - Ny^2 = k</math> has an integral solution for k = <math>\pm 1, \pm 2, \pm 4</math> then <math>x^2 - Ny^2 = 1</math> has a solution. The solution of the general Pell's equation would have to wait for [[Bhaskara II]] in c. 1150 CE.<ref name="Stillwell p. 72-74">{{cite book | first = John | last = Stillwell | year = 2004 | pages = 72–74 | title = }}</ref> | ||
+ | |||
+ | ===Geometry === | ||
+ | ==== Brahmagupta's formula ==== | ||
+ | [[Image:Brahmaguptas formula.svg|200px|thumb|right|Diagram for reference]] | ||
+ | {{main|Brahmagupta's formula}} | ||
+ | |||
+ | Brahmagupta's most famous result in geometry is his [[Brahmagupta's formula|formula]] for [[cyclic quadrilaterals]]. Given the lengths of the sides of any cyclic quadrilateral, Brahmagupta gave an approximate and an exact formula for the figure's area, | ||
+ | <blockquote>12.21. The approximate area is the product of the halves of the sums of the sides and opposite sides of a triangle and a quadrilateral. The accurate [area] is the square root from the product of the halves of the sums of the sides diminished by [each] side of the quadrilateral.<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | So given the lengths ''p'', ''q'', ''r'' and ''s'' of a cyclic quadrilateral, the approximate area is <math>(\tfrac{p + r}{2}) (\tfrac{q + s}{2})</math> while, letting <math>t = \tfrac{p + q + r + s}{2}</math>, the exact area is | ||
+ | |||
+ | : <math>\sqrt{(t - p)(t - q)(t - r)(t - s)}.</math> | ||
+ | |||
+ | Although Brahmagupta does not explicitly state that these quadrilaterals are cyclic, it is apparent from his rules that this is the case.<ref>{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 424 | title = | quote = Brahmagupta does not explicitly state that he is discussing only figures inscribed in circles, but it is implied by these rules for computing their circumradius.}}</ref> [[Heron's formula]] is a special case of this formula and it can be derived by setting one of the sides equal to zero. | ||
+ | |||
+ | ==== Triangles ==== | ||
+ | Brahmagupta dedicated a substantial portion of his work to geometry. One theorem states that the two lengths of a triangle's base when divided by its altitude then follows, | ||
+ | <blockquote>12.22. The base decreased and increased by the difference between the squares of the sides divided by the base; when divided by two they are the true segments. The perpendicular [altitude] is the square-root from the square of a side diminished by the square of its segment.<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | Thus the lengths of the two segments are <math>b \pm (c^2 - a^2)/b</math>. | ||
+ | |||
+ | He further gives a theorem on [[rational triangles]]. A triangle with rational sides ''a'', ''b'', ''c'' and rational area is of the form: | ||
+ | |||
+ | :<math>a = \frac{1}{2}\left(\frac{u^2}{v}+v\right), \ \ b = \frac{1}{2}\left(\frac{u^2}{w}+w\right), \ \ c = \frac{1}{2}\left(\frac{u^2}{v} - v + \frac{u^2}{w} - w\right) </math> | ||
+ | |||
+ | for some rational numbers ''u'', ''v'', and ''w''.<ref>{{Harv|Stillwell|2004|p=77}}</ref> | ||
+ | |||
+ | ==== Brahmagupta's theorem ==== | ||
+ | {{main|Brahmagupta theorem}} | ||
+ | [[Image:Brahmaguptra's theorem.svg|thumb|right|Brahmagupta's theorem states that ''AF'' = ''FD''.]] | ||
+ | |||
+ | Brahmagupta continues, | ||
+ | <blockquote>12.23. The square-root of the sum of the two products of the sides and opposite sides of a non-unequal quadrilateral is the diagonal. The square of the diagonal is diminished by the square of half the sum of the base and the top; the square-root is the perpendicular [altitudes].<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | So, in a "non-unequal" cyclic quadrilateral (that is, an isosceles [[trapezoid]]), the length of each diagonal is <math>\sqrt{pr + qs}</math>. | ||
+ | |||
+ | He continues to give formulas for the lengths and areas of geometric figures, such as the circumradius of an isosceles trapezoid and a scalene quadrilateral, and the lengths of diagonals in a scalene cyclic quadrilateral. This leads up to [[Brahmagupta's theorem|Brahmagupta's famous theorem]], | ||
+ | <blockquote>12.30-31. Imaging two triangles within [a cyclic quadrilateral] with unequal sides, the two diagonals are the two bases. Their two segments are separately the upper and lower segments [formed] at the intersection of the diagonals. The two [lower segments] of the two diagonals are two sides in a triangle; the base [of the quadrilateral is the base of the triangle]. Its perpendicular is the lower portion of the [central] perpendicular; the upper portion of the [central] perpendicular is half of the sum of the [sides] perpendiculars diminished by the lower [portion of the central perpendicular].<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | |||
+ | ==== Pi ==== | ||
+ | In verse 40, he gives values of [[pi|''π'']], | ||
+ | <blockquote>12.40. The diameter and the square of the radius [each] multiplied by 3 are [respectively] the practical circumference and the area [of a circle]. The accurate [values] are the square-roots from the squares of those two multiplied by ten.<ref name="Plofker Brahmagupta quote Chapter 12"/></blockquote> | ||
+ | So Brahmagupta uses 3 as a "practical" value of ''π'', and <math>\sqrt{10}</math> as an "accurate" value of ''π''. | ||
+ | |||
+ | ==== Measurements and constructions ==== | ||
+ | In some of the verses before verse 40, Brahmagupta gives constructions of various figures with arbitrary sides. He essentially manipulated right triangles to produce isosceles triangles, scalene triangles, rectangles, isosceles trapezoids, isosceles trapezoids with three equal sides, and a scalene cyclic quadrilateral. | ||
+ | |||
+ | After giving the value of pi, he deals with the geometry of plane figures and solids, such as finding volumes and surface areas (or empty spaces dug out of solids). He finds the volume of rectangular prisms, pyramids, and the frustrum of a square pyramid. He further finds the average depth of a series of pits. For the volume of a [[frustum]] of a pyramid, he gives the "pragmatic" value as the depth times the square of the mean of the edges of the top and bottom faces, and he gives the "superficial" volume as the depth times their mean area.<ref>"{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 427 | title = | quote = After the geometry of plane figures, Brahmagupta discusses the computation of volumes and surface areas of solids (or empty spaces dug out of solids). His straight-forward rules for the volumes of a rectangular prism and pyramid are followed by a more ambiguous one, which may refer to finding the average depth of a sequence of puts with different depths. The next formula apparently deals with the volume of a frustum of a square pyramid, where the "pragmatic" volume is the depth times the square of the mean of the edges of the top and bottom faces, while the "superficial" volume is the depth times their mean area.}}</ref> | ||
+ | |||
+ | === Trigonometry === | ||
+ | {{Mergefrom|Brahmagupta interpolation formula|Talk:Brahmagupta interpolation formula#Proposal to merge into Brahmagupta article|subst:DATE|date=September 2008}} | ||
+ | In Chapter 2 of his ''Brahmasphutasiddhanta'', entitled ''Planetary True Longitudes'', Brahmagupta presents a sine table: | ||
+ | |||
+ | <blockquote>2.2-5. The sines: The Progenitors, twins; Ursa Major, twins, the Vedas; the gods, fires, six; flavors, dice, the gods; the moon, five, the sky, the moonl the moon, arrows, suns [...]<ref>{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 419 | title =}}</ref></blockquote> | ||
+ | |||
+ | Here Brahmagupta uses names of objects to represent the digits of place-value numerals, as was common with numerical data in Sanskrit treatises. Progenitors represents the 14 Progenitors ("Manu") in Indian cosmology or 14, "twins" means 2, "Ursa Major" represents the seven stars of Ursa Major or 7, "Vedas" refers to the 4 Vedas or 4, dice represents the number of sides of the tradition die or 6, and so on. This information can be translated into the list of sines, 214, 427, 638, 846, 1051, 1251, 1446, 1635, 1817, 1991, 2156, 2312, 1459, 2594, 2719, 2832, 2933, 3021, 3096, 3159, 3207, 3242, 3263, and 3270, with the radius being 3270.<ref name="Plofker 419–420"/> | ||
+ | |||
+ | In his ''Paitamahasiddhanta'', Brahmagupta uses the initial sine value of 225 with a radius of approximately 3438, although the rest of the sine table is lost. The value of 3438 for the radius is a traditional value that was also used by Aryabhata, although it is not known why Brahmagupta used 3270 instead of the 3438 in his ''Brahmasphutasiddhanta''.<ref name="Plofker 419–420">{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 419–420 | title = | quote = Brahmagupta's sine table, like much other numerical data in Sanskrit treatises, is encoded mostly in concrete-number notation that uses names of objects to represent the digits of place-value numerals, starting with the least significant. [...]<BR>There are fourteen Progenitors ("Manu") in Indian cosmology; "twins" of course stands for 2; the seven stars of Ursa Major (the "Sages") for 7, the four Vedas, and the four sides of the traditional dice used in gambling, for 6, and so on. Thus Brahmagupta enumerates his first six sine-values as 214, 427, 638, 846, 1051, 1251. (His remaining eighteen sines are 1446, 1635, 1817, 1991, 2156, 2312, 1459, 2594, 2719, 2832, 2933, 3021, 3096, 3159, 3207, 3242, 3263, 3270. The ''Paitamahasiddhanta'', however, specifies an initial sine-value of 225 (although the rest of its sine-table is lost), implying a trigonometric radius of ''R'' = 3438 aprox= C(')/2π: a tradition followed, as we have seen, by Aryabhata. Nobody knows why Brahmagupta chose instead to normalize these values to R = 3270.}}</ref> | ||
[[Categoría: Matemáticas]][[Categoría: Historia de las Matemáticas]][[Categoría: Matemáticos]] | [[Categoría: Matemáticas]][[Categoría: Historia de las Matemáticas]][[Categoría: Matemáticos]] |
Revisión de 09:18 25 dic 2008
Brahmagupta (598–668), matemático y astrónomo indú.
Tabla de contenidos |
Vida y obra
Brahmagupta nació en el año 598 en Bhinmal, ciudad en el estado de Rajasthan, al noroeste de la India. Probablemente vivió la mayor parte de su vida en Bhillamala (moderna Bhinmal, en Rajasthan) en el imperio de Harsha, durante el reinado del Rey Vyaghramukha. Como resultado de ello, Brahmagupta es a menudo citado como Bhillamalacarya que quiere decir, el maestro de Bhillamala Bhinmal.
Fue el jefe del observatorio astronómico en Ujjain, y durante su mandato allí escribió cuatro textos sobre las matemáticas y la astronomía: Cadamekela en el 624, Brahmasphutasiddhanta en 628, Khandakhadyaka en 665, y Durkeamynarda en 672. El Brahmasphutasiddhanta (Tratado corregido de Brahma) es posiblemente su obra más famosa. El historiador Al-Biruni (c. 1050) en su libro Tariq al-Hind, afirma que el califa Abbasid al-Ma'mun, que tenía una embajada en la India, llevó de3 allí un libro a Bagdad que fue traducido al árabe como Sindhind. Se presume que Sindhind no es otro que Brahmagupta-Brahmasphuta Siddhanta.
Aunque Brahmagupta estaba familiarizado con las obras de los astrónomos siguiendo la tradición de Aryabhatiya, no se sabe si está familiarizado con la labor de Bhaskara I, un contemporáneo. Brahmagupta tenía una cantidad de críticas dirigidas hacia la labor de los astrónomos rivales, y en su Brahmasphutasiddhanta se encuentra uno de los primeros cismas de fe entre matemáticos indios. La división fue principalmente sobre la aplicación de las matemáticas al mundo físico, más que sobre las matemáticas en si mismas. En el caso de Brahmagupta, los desacuerdos se debieron en gran parte de la elección de las teorías y parámetros astronómicos. A lo largo de los primeros diez capítulos astronómicos aparecen críticas a las teorías rivales, y el undécimo capítulo está completamente dedicado a la crítica de estas teorías, aunque las críticas no aparecen en el duodécimo y décimo octavo capítulos.
Matemáticas
La obra más famosa de Brahmagupta es su Brahmasphutasiddhanta. Compuesta en verso elíptico, practica común en las matemáticas indueshematics]], la obra tiene, en consecuencia, un cierto halo poético. Como en ella no se dan demostraciones, no se sabe como Brahmagupta obtenía los resultados matemáticos.
Algebra
Brahmagupta da la solución de la ecuación lineal general en el capítulo dieciocho de Brahmasphutasiddhanta, que aunque expresada en el libro en palabras, viene a ser equivalente a la siuiente expresión algebraica:
Además, dio dos soluciones equivalentes para la ecuación general de segundo grado, que vienen a ser equivalentes, respectivamente, a las siguientes expresiones algebraicas:
y
El contina resolviendo sistemas de ecuaciones indeterminados, enunciando que la variable elegida debe primero aislarse, y que luego la ecuación debe dividirse por el coeficiente de la variable elegida.
Al igual que el álgebra de Diofanto, el álgebra de Brahmagupta es sincopada. La suma la indicaba colocando los números uno al lado del otro, la resta colocando un punto sobre el sustraendo, la división colocando el divisor debajo del dividendo, similar a nuestra notación, pero sin la barra. La multiplicación, las raices y las incógnitas las representaba mediante abrebiaturas de términos apropiados. Fue el primero en dar una solución general a la ecuación lineal de Diofanto ax + by = c, donde a, b, y c son enteros. También es muy posible que diese todas las soluciones de dicha ecuación, mientras que Diofanto se sintió satisfecho con dar una sola solución de una ecuación indeterminada. En la medida en que Brahmagupta utilizó algunos ejemplos iguales a los de Diofanto, vemos la posibilidad de que ambos hubiesen usado las mismas fuentes, posiblemente babilónicas. No se sabe hasta que punto el uso de la notación sincopada en el álgebra de Brahmagupta es debido a los griegos o si tanto griegos como hindues derivan su uso de una fuente común usase notación sincopada, no se conoce y es posible que tanto el griego y el indio síncopa pueden derivarse de una fuente común, las matemáticas babilónicas.
Aritmética
Al comienzo del capítulo doce de suBrahmasphutasiddhanta, titulado Cálculo, Brahmagupta detalla operaciones con fracciones. Da por supuesto que el lector conoce las operaciones aritméticas básicas, como tomar la raíz cuadrada, aunque si explica cómo hallar el cubo y la raíz cúbica de un número entero y, posteriormente, da normas que facilitan el cálculo de cuadrados y raíces cuadradas. A continuación, da las normas para abordar cinco tipos de combinaciones de fracciones,
- .
Series
Brahmagupta then goes on to give the sum of the squares and cubes of the first n integers.
12.20. The sum of the squares is that [sum] multiplied by twice the [number of] step[s] increased by one [and] divided by three. The sum of the cubes is the square of that [sum] Piles of these with identical balls [can also be computed].<ref name="Plofker Brahmagupta quote Chapter 12">Plantilla:Cite book</ref>
It is important to note here Brahmagupta found the result in terms of the sum of the first n integers, rather than in terms of n as is the modern practice.<ref name="Plofker 423">Plantilla:Cite book</ref>
He gives the sum of the squares of the first n natural numbers as n(n+1)(2n+1)/6 and the sum of the cubes of the first n natural numbers as (n(n+1)/2)².
Zero
Brahmagupta made use of an important concept in mathematics, the number zero. The Brahmasphutasiddhanta is the earliest known text to treat zero as a number in its own right, rather than as simply a placeholder digit in representing another number as was done by the Babylonians or as a symbol for a lack of quantity as was done by Ptolemy and the Romans. In chapter eighteen of his Brahmasphutasiddhanta, Brahmagupta describes operations on negative numbers. He first describes addition and subtraction,
18.30. [The sum] of two positives is positives, of two negatives negative; of a positive and a negative [the sum] is their difference; if they are equal it is zero. The sum of a negative and zero is negative, [that] of a positive and zero positive, [and that] of two zeros zero.
[...]
18.32. A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta">Plantilla:Cite book</ref>
He goes on to describe multiplication,
18.33. The product of a negative and a positive is negative, of two negatives positive, and of positives positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/>
But then he spoils the matter some what when he describes division,
18.34. A positive divided by a positive or a negative divided by a negative is positive; a zero divided by a zero is zero; a positive divided by a negative is negative; a negative divided by a positive is [also] negative.
18.35. A negative or a positive divided by zero has that [zero] as its divisor, or zero divided by a negative or a positive [has that negative or positive as its divisor]. The square of a negative or of a positive is positive; [the square] of zero is zero. That of which [the square] is the square is [its] square-root.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/>
Here Brahmagupta states that No se pudo entender (función desconocida\tfrac): \tfrac{0}{0} = 0
and as for the question of No se pudo entender (función desconocida\tfrac): \tfrac{a}{0} where he did not commit himself.<ref name="Boyer Brahmagupta p220">Plantilla:Cite book</ref> His rules for arithmetic on negative numbers and zero are quite close to the modern understanding, except that in modern mathematics division by zero is left undefined.
Diophantine analysis
Pythagorean triples
In chapter twelve of his Brahmasphutasiddhanta, Brahmagupta finds Pythagorean triples,
12.39. The height of a mountain multiplied by a given multiplier is the distance to a city; it is not erased. When it is divided by the multiplier increased by two it is the leap of one of the two who make the same journey.<ref name="Plofker Brahmagupta quote Chapter 12"/>
or in other words, for a given length m and an arbitrary multiplier x, let a = mx and b = m + mx/(x + 2). Then m, a, and b form a Pythagorean triple.<ref name="Plofker Brahmagupta quote Chapter 12"/>
Pell's equation
Brahmagupta went on to give a recurrence relation for generating solutions to certain instances of Diophantine equations of the second degree such as Nx2 + 1 = y2 (called Pell's equation) by using the Euclidean algorithm. The Euclidean algorithm was known to him as the "pulverizer" since it breaks numbers down into ever smaller pieces.<ref>Plantilla:Cite book</ref>
The nature of squares:
18.64. [Put down] twice the square-root of a given square by a multiplier and increased or diminished by an arbitrary [number]. The product product of the first [pair], multiplied by the multiplier, with the product of the last [pair], is the last computed.
18.65. The sum of the thunderbolt products is the first. The additive is equal to the product of the additives. The two square-roots, divided by the additive or the subtractive, are the additive rupas.<ref name="Plofker Chapter 18 Brahmasphutasiddhanta"/>
The key to his solution was the identity,<ref name="Stillwell p. 72-74"/>
which is a generalization of an identity that was discovered by Diophantus,
Using his identity and the fact that if (x1, y1) and (x2, y2) are solutions to the equations x2 − Ny2 = k1 and x2 − Ny2 = k2, respectively, then (x1x2 + Ny1y2, x1y2 + x2y1) is a solution to x2 − Ny2 = k1k2, he was able to find integral solutions to the Pell's equation through a series of equations of the form x2 − Ny2 = ki. Unfortunately, Brahmagupta was not able to apply his solution uniformly for all possible values of N, rather he was only able to show that if x2 − Ny2 = k has an integral solution for k = then x2 − Ny2 = 1 has a solution. The solution of the general Pell's equation would have to wait for Bhaskara II in c. 1150 CE.<ref name="Stillwell p. 72-74">Plantilla:Cite book</ref>
Geometry
Brahmagupta's formula
Brahmagupta's most famous result in geometry is his formula for cyclic quadrilaterals. Given the lengths of the sides of any cyclic quadrilateral, Brahmagupta gave an approximate and an exact formula for the figure's area,
12.21. The approximate area is the product of the halves of the sums of the sides and opposite sides of a triangle and a quadrilateral. The accurate [area] is the square root from the product of the halves of the sums of the sides diminished by [each] side of the quadrilateral.<ref name="Plofker Brahmagupta quote Chapter 12"/>
So given the lengths p, q, r and s of a cyclic quadrilateral, the approximate area is No se pudo entender (función desconocida\tfrac): (\tfrac{p + r}{2}) (\tfrac{q + s}{2})
while, letting No se pudo entender (función desconocida\tfrac): t = \tfrac{p + q + r + s}{2}
, the exact area is
Although Brahmagupta does not explicitly state that these quadrilaterals are cyclic, it is apparent from his rules that this is the case.<ref>Plantilla:Cite book</ref> Heron's formula is a special case of this formula and it can be derived by setting one of the sides equal to zero.
Triangles
Brahmagupta dedicated a substantial portion of his work to geometry. One theorem states that the two lengths of a triangle's base when divided by its altitude then follows,
12.22. The base decreased and increased by the difference between the squares of the sides divided by the base; when divided by two they are the true segments. The perpendicular [altitude] is the square-root from the square of a side diminished by the square of its segment.<ref name="Plofker Brahmagupta quote Chapter 12"/>
Thus the lengths of the two segments are .
He further gives a theorem on rational triangles. A triangle with rational sides a, b, c and rational area is of the form:
for some rational numbers u, v, and w.<ref>Plantilla:Harv</ref>
Brahmagupta's theorem
Brahmagupta continues,
12.23. The square-root of the sum of the two products of the sides and opposite sides of a non-unequal quadrilateral is the diagonal. The square of the diagonal is diminished by the square of half the sum of the base and the top; the square-root is the perpendicular [altitudes].<ref name="Plofker Brahmagupta quote Chapter 12"/>
So, in a "non-unequal" cyclic quadrilateral (that is, an isosceles trapezoid), the length of each diagonal is .
He continues to give formulas for the lengths and areas of geometric figures, such as the circumradius of an isosceles trapezoid and a scalene quadrilateral, and the lengths of diagonals in a scalene cyclic quadrilateral. This leads up to Brahmagupta's famous theorem,
12.30-31. Imaging two triangles within [a cyclic quadrilateral] with unequal sides, the two diagonals are the two bases. Their two segments are separately the upper and lower segments [formed] at the intersection of the diagonals. The two [lower segments] of the two diagonals are two sides in a triangle; the base [of the quadrilateral is the base of the triangle]. Its perpendicular is the lower portion of the [central] perpendicular; the upper portion of the [central] perpendicular is half of the sum of the [sides] perpendiculars diminished by the lower [portion of the central perpendicular].<ref name="Plofker Brahmagupta quote Chapter 12"/>
Pi
In verse 40, he gives values of π,
12.40. The diameter and the square of the radius [each] multiplied by 3 are [respectively] the practical circumference and the area [of a circle]. The accurate [values] are the square-roots from the squares of those two multiplied by ten.<ref name="Plofker Brahmagupta quote Chapter 12"/>
So Brahmagupta uses 3 as a "practical" value of π, and as an "accurate" value of π.
Measurements and constructions
In some of the verses before verse 40, Brahmagupta gives constructions of various figures with arbitrary sides. He essentially manipulated right triangles to produce isosceles triangles, scalene triangles, rectangles, isosceles trapezoids, isosceles trapezoids with three equal sides, and a scalene cyclic quadrilateral.
After giving the value of pi, he deals with the geometry of plane figures and solids, such as finding volumes and surface areas (or empty spaces dug out of solids). He finds the volume of rectangular prisms, pyramids, and the frustrum of a square pyramid. He further finds the average depth of a series of pits. For the volume of a frustum of a pyramid, he gives the "pragmatic" value as the depth times the square of the mean of the edges of the top and bottom faces, and he gives the "superficial" volume as the depth times their mean area.<ref>"Plantilla:Cite book</ref>
Trigonometry
Plantilla:Mergefrom In Chapter 2 of his Brahmasphutasiddhanta, entitled Planetary True Longitudes, Brahmagupta presents a sine table:
2.2-5. The sines: The Progenitors, twins; Ursa Major, twins, the Vedas; the gods, fires, six; flavors, dice, the gods; the moon, five, the sky, the moonl the moon, arrows, suns [...]<ref>Plantilla:Cite book</ref>
Here Brahmagupta uses names of objects to represent the digits of place-value numerals, as was common with numerical data in Sanskrit treatises. Progenitors represents the 14 Progenitors ("Manu") in Indian cosmology or 14, "twins" means 2, "Ursa Major" represents the seven stars of Ursa Major or 7, "Vedas" refers to the 4 Vedas or 4, dice represents the number of sides of the tradition die or 6, and so on. This information can be translated into the list of sines, 214, 427, 638, 846, 1051, 1251, 1446, 1635, 1817, 1991, 2156, 2312, 1459, 2594, 2719, 2832, 2933, 3021, 3096, 3159, 3207, 3242, 3263, and 3270, with the radius being 3270.<ref name="Plofker 419–420"/>
In his Paitamahasiddhanta, Brahmagupta uses the initial sine value of 225 with a radius of approximately 3438, although the rest of the sine table is lost. The value of 3438 for the radius is a traditional value that was also used by Aryabhata, although it is not known why Brahmagupta used 3270 instead of the 3438 in his Brahmasphutasiddhanta.<ref name="Plofker 419–420">Plantilla:Cite book</ref>