Fórmula del binomio de Newton (1ºBach)
De Wikipedia
(Diferencia entre revisiones)
Revisión de 01:32 10 sep 2016 Coordinador (Discusión | contribuciones) (→Ejercicios resueltos) ← Ir a diferencia anterior |
Revisión de 11:09 18 sep 2016 Coordinador (Discusión | contribuciones) (→Binomio de Newton) Ir a siguiente diferencia → |
||
Línea 11: | Línea 11: | ||
{{Tabla75|celda2=[[Imagen:Triangulo_Pascal_3.jpg|thumb|270px|Triángulo de Pascal en el escrito original de Pascal.]] | {{Tabla75|celda2=[[Imagen:Triangulo_Pascal_3.jpg|thumb|270px|Triángulo de Pascal en el escrito original de Pascal.]] | ||
|celda1= | |celda1= | ||
- | {{Teorema_sin_demo|titulo=Teorema: ''Fórmula del binomio de Newton''|enunciado=:El desarrollo de la potencia n-ésima de un binomio viene dado por la siguiente fórmula: | + | {{Teorema_sin_demo|titulo=Teorema: ''Fórmula del binomio de Newton''|enunciado=El desarrollo de la potencia n-ésima de un binomio viene dado por la siguiente fórmula: |
<br> | <br> | ||
<center><math>(a+b)^n = {n \choose 0}a^n + {n \choose 1}a^{n-1}b^1 + {n \choose 2}a^{n-2}b^2 + \cdots + {n \choose n-1}a^1 b^{n-1} + {n \choose n} b^n, | <center><math>(a+b)^n = {n \choose 0}a^n + {n \choose 1}a^{n-1}b^1 + {n \choose 2}a^{n-2}b^2 + \cdots + {n \choose n-1}a^1 b^{n-1} + {n \choose n} b^n, | ||
</math></center> | </math></center> | ||
<br> | <br> | ||
- | :que podemos expresar de forma abreviada de la siguiente manera: | + | que podemos expresar de forma abreviada de la siguiente manera: |
<center><math>(a+b)^n = \sum_{k=0}^n {n \choose k}a^{n-k}b^k </math></center> | <center><math>(a+b)^n = \sum_{k=0}^n {n \choose k}a^{n-k}b^k </math></center> | ||
- | :siendo<math>{n\choose k}</math>, los [[Factoriales y números combinatorios (1ºBach)#Coeficientes binomiales | coeficientes binomiales]]. | + | siendo<math>{n\choose k}</math>, los [[Factoriales y números combinatorios (1ºBach)#Coeficientes binomiales | coeficientes binomiales]]. |
}} | }} | ||
Línea 76: | Línea 76: | ||
{{ejercicio_cuerpo | {{ejercicio_cuerpo | ||
|enunciado= | |enunciado= | ||
- | :Halla el desarrollo de (a+b)<sup>7</sup>. | + | Halla el desarrollo de (a+b)<sup>7</sup>. |
{{p}} | {{p}} | ||
Línea 88: | Línea 88: | ||
}} | }} | ||
{{p}} | {{p}} | ||
+ | |||
==Ejercicios propuestos== | ==Ejercicios propuestos== | ||
{{ejercicio | {{ejercicio |
Revisión de 11:09 18 sep 2016
Menú:
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(pág 45)
Binomio de Newton
Teorema: Fórmula del binomio de Newton El desarrollo de la potencia n-ésima de un binomio viene dado por la siguiente fórmula:
siendo, los coeficientes binomiales.
|
Triángulo de Pascal
El triángulo de Pascal es una representación de los coeficientes binomiales ordenados en forma triangular. También conocido como triángulo de Tartaglia, especialmente en Italia, en honor al algebrista italiano Niccolò Fontana Tartaglia (1500–77).
Propiedades
Demostración:
|
Ejercicios propuestos
Ejercicios propuestos: Binomio de Newton |