Números complejos: Definición (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 08:07 2 oct 2016
Coordinador (Discusión | contribuciones)
(Forma binómica de un número complejo)
← Ir a diferencia anterior
Revisión de 08:09 2 oct 2016
Coordinador (Discusión | contribuciones)
(Opuesto y conjugado de un complejo)
Ir a siguiente diferencia →
Línea 141: Línea 141:
===Opuesto y conjugado de un complejo=== ===Opuesto y conjugado de un complejo===
{{Caja_Amarilla|texto= {{Caja_Amarilla|texto=
-*Se define el '''opuesto''' de un complejo <math>a+bi\,</math> como el número complejo <math>-a-bi\,</math>.+*Se define el '''opuesto''' de un complejo <math>z=a+bi\,</math> como el número complejo <math>-z=-a-bi\,</math>.
*Se define el '''conjugado''' de un complejo <math>z=a+bi\,</math> como el número complejo <math>\bar z =a-bi\,</math>. *Se define el '''conjugado''' de un complejo <math>z=a+bi\,</math> como el número complejo <math>\bar z =a-bi\,</math>.
}} }}

Revisión de 08:09 2 oct 2016

Tabla de contenidos

Necesidad de ampliación del campo numérico

Hay ecuaciones como

x^2 +9 = 0 \,

que no tienen solución en el conjunto de los números reales

x^2 +9 = 0 \rightarrow x^2=-9 \rightarrow x=\pm \sqrt{-9}     (no existe en \mathbb{R})

Vamos a definir un nuevo conjunto que amplie al conjunto de los números reales y en el cual estas ecuaciones si tengan solución. Ese conjunto va a ser el conjunto de los números complejos. Para ello habrá que a empezar dando sentido a las raíces de números negativos.

Unidad imaginaria

Desde Al-Jwarizmi (800 DC), precursor del Álgebra, que sólo obtenía las soluciones positivas de las ecuaciones, pasaron más de ocho siglos, hasta que finalmente Descartes en 1637 puso nombre a las raíces cuadradas de números negativos, numeros imaginarios. En 1572, Raffaelle Bombelli, un matemático e ingeniero italiano, las inventó e hizo uso de ellas en sus cálculos en la resolución de ecuaciones. Leibniz decía de los números imaginarios que eran "una especie de anfibios entre el ser y la nada".

Se denomina unidad imaginaria a \sqrt{-1}. Se designa por la letra i\,.

i=\sqrt{-1}

El nombre de i le fue dado por Euler en 1777, por imaginario. Y llamó imaginarios a todos los números en cuya expresión aparecía la i.

Con esta definición, la ecuación anterior ahora si tiene solución "imaginaria":

x^2 +9 = 0\;


x=\pm \sqrt{-9} \,=\, \pm 3 \, \sqrt{-1} \,=\, \pm \, 3i

Potencias de la unidad imaginaria

ejercicio

Potencias de i


  • i^0=1\,
  • i^1=i\,
  • i^2=(\sqrt{-1} \, )^2=-1
  • i^3=i \cdot i^2=-i
  • i^4=i^2 \cdot i^2= (-1) \cdot (-1)=1

A partir de i^4\, se repiten cíclicamente los valores.

El conjunto de los números complejos

Definimos el conjunto de los números complejos de la siguiente manera:

\mathbb{C}=\big\{ a+bi \, / \, a, \, b \in \mathbb{R} \big\}

Forma binómica de un número complejo

  • La expresión a+bi\, se denomina forma binómica de un número complejo.
  • Si escribimos z=a+bi\,, entonces:
  • a\, se le llama parte real o componente real y se denota Re(z)=a\,.
  • b\, se llama parte imaginaria o componente imaginaria y se denota Im(z)=b\,..
  • Si b=0\,, lo que tenemos es un número real, por tanto \mathbb{R} \sub \mathbb{C}.
  • Si b \ne 0\,, lo que tenemos no es un número real, se llama número imaginario.
  • Si a=0\, y b \ne 0\,, se le llama número imaginario puro.

Igualdad de números complejos

Dos números complejos en forma binómica decimos que son iguales si tienen iguales sus partes reales y sus partes imaginarias.

\forall z, w \in \mathbb{C}, \ z=w \iff Re(z)=Re(w) ~\wedge~ Im(z)=Im(w)

    

\mathbb{C} \mbox{    Complejos}     \begin{cases}          \mathbb{R} & \mbox{Reales}         \begin{cases}             \mathbb{Q} & \mbox{Racionales}                 \begin{cases}                     \mathbb{Z} & \mbox{Enteros}                     \begin{cases}                         \mathbb{N} & \mbox{Naturales} \\                                    & \mbox{Enteros negativos} \\                                    & \mbox {Cero}                                    \end{cases}\\                                 & \mbox{Fraccionarios}                 \end{cases}\\                        & \mbox{Irracionales}         \end{cases}\\          & \mbox{Imaginarios}     \end{cases}

Opuesto y conjugado de un complejo

  • Se define el opuesto de un complejo z=a+bi\, como el número complejo -z=-a-bi\,.
  • Se define el conjugado de un complejo z=a+bi\, como el número complejo \bar z =a-bi\,.

ejercicio

Proposición


Cualquier ecuación de segundo grado con coeficientes reales que no tenga solución real tiene dos soluciones imaginarias que son números complejos conjugados

ejercicio

Ejercicios: Números complejos


Representación gráfica de los números complejos

Para representar los números reales utilizabamos una recta, la recta real. Para representar los números complejos vamos a utilizar un plano, el plano complejo. ¿Por qué?. Muy simple, un número complejo en forma binómica a+bi\, queda determinado por un par de números reales: su parte real, a\, y su parte imaginaria, b\,. De esta manera, el par (a,b)\, representa las coordenadas de un punto del plano. Diremos que (a,b)\, es el afijo del número complejo a+bi\,.

Ahora, al eje X, lo llamaremos eje real, y al eje Y, eje imaginario.

También podemos representar al número complejo mediante un vector de origen (0,0)\, y extremo (a,b)\,.

Imagen:complejo.jpg

ejercicio

Ejercicios: El plano complejo


ejercicio

Actividad interactiva: Representación gráfica de números complejos


Actividad 1: Representa en tu cuaderno los siguientes números complejos, sus opuestos y sus conjugados. Comprueba tus representaciones en la escena:
5 + 2i \, , \quad -4 + 3i \quad ,  \quad -3 - 2i \quad ,  \quad 4 - 3i \quad ,  \quad 5i \quad ,  \quad -2i \quad ,  \quad -3 \quad ,  \quad 1 \quad ,  \quad -1 \quad ,  \quad i \quad ,  \quad -i

Actividad 2: Calcula las siguientes potencias de i en tu cuaderno, representa gráficamente los resultados y compruébalo todo en la escena:
i^{189} \, , \quad i^{134} \quad ,  \quad i^{275} \quad ,  \quad i^{1284}

ejercicio

Video: Fractales... la geometría del caos (18´)


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda